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Abstract: We recast physical properties of the Bagger-Lambert theory, such as shift-

symmetry and decoupling of ghosts, the absence of scale and parity invariance, in Lie 3-

algebraic terms, thus motivating the study of metric Lie 3-algebras and their Lie algebras of

derivations. We prove a structure theorem for metric Lie 3-algebras in arbitrary signature

showing that they can be constructed out of the simple and one-dimensional Lie 3-algebras

iterating two constructions: orthogonal direct sum and a new construction called a double

extension, by analogy with the similar construction for Lie algebras. We classify metric Lie

3-algebras of signature (2, p) and study their Lie algebras of derivations, including those

which preserve the conformal class of the inner product. We revisit the 3-algebraic criteria

spelt out at the start of the paper and select those algebras with signature (2, p) which

satisfy them, as well as indicate the construction of more general metric Lie 3-algebras

satisfying the ghost-decoupling criterion.
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1. Introduction

The foundational work of Bagger and Lambert [1] and Gustavsson [2], has led to the

construction in [3] of a superconformal field theory in three-dimensional Minkowski space-

time as a model of multiple M2-branes in M-theory. This theory realises the maximal

osp(8|4) superconformal symmetry of the near-horizon geometry of M2-branes in eleven-

dimensional supergravity. The lagrangian and its equations of motion nicely encapsulate

several other features expected [4, 5] in the long sought-after low-energy description of

multiple M2-branes. These encouraging properties have prompted a great deal of interest

in the Bagger-Lambert theory [6 – 42].

The Bagger-Lambert theory has a novel local gauge symmetry which is not based

on a Lie algebra, but rather on a Lie 3-algebra [43]. The analogue of the Lie bracket

[−,−] here being the 3-bracket [−,−,−], an alternating trilinear map on a vector space V ,

which satisfies a natural generalisation of the Jacobi identity (sometimes referred to as the

fundamental identity). The dynamical fields in the Bagger-Lambert model take values in

V and consist of eight real bosonic scalars and a fermionic spinor in three dimensions which

transforms as a chiral spinor under the so(8) R-symmetry. There is also a non-dynamical

gauge field which takes values in a Lie subalgebra of gl(V ). The on-shell closure of the

supersymmetry transformations for these fields follows from the fundamental identity.

To obtain the correct equations of motion for the Bagger-Lambert theory from a la-

grangian that is invariant under all the aforementioned symmetries seems to require the

Lie 3-algebra to admit an invariant inner product. (Following remark 8 in [31] , we will

take this inner product to be non-degenerate.) The signature of the inner product here

determines the relative signs of the kinetic terms for the scalar and fermion fields in the

Bagger-Lambert lagrangian. It would therefore be desirable to choose this inner product to

have positive-definite signature, to avoid the occurrence of states with negative-norm in the

quantum theory. Unfortunately there are very few such euclidean metric Lie 3-algebras.

Indeed, as shown in [44] (see also [17, 18]), they can always be written as the direct sum

of abelian Lie 3-algebras plus multiple copies of the unique simple euclidean Lie 3-algebra

S0,4 considered by Bagger and Lambert in their original construction. The moduli space

for the Bagger-Lambert theory associated with S0,4 has been interpreted as describing two

M2-branes on a certain M-theory orbifold in [12, 13].

Thus, in order to find new interacting Bagger-Lambert lagrangians and despite the

possibility of negative-norm states, one is led to contemplate Lie 3-algebras with an invari-

ant inner product of indefinite signature. This idea was pioneered in [20 – 22] for a class

of Lie 3-algebras (defined by a euclidean semisimple Lie algebra in two dimensions lower)

admitting an inner product of lorentzian signature. (It was subsequently proved in [31] that

every indecomposable lorentzian Lie 3-algebra belongs to this class, unless it is the unique

simple lorentzian Lie 3-algebra S1,3 or one-dimensional.) A feature of these lorentzian Lie

3-algebras is that their canonical 4-form (built from the 3-algebra structure constants and

invariant inner product) has precisely one leg in only one of the two null directions of

the 3-algebra (the remaining three legs are in the directions spanned by the euclidean Lie

algebra). It is this 4-form which dictates the structure of the interactions appearing in
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the Bagger-Lambert lagrangian. Consequently the scalar and fermion fields in the other

null direction of the 3-algebra appear only in the free kinetic terms of the Bagger-Lambert

lagrangian here. This might suggest one could simply integrate out these components,

thus setting the scalar and fermion components in the complementary null direction to

obey their free field equations. However, the absence of interaction terms involving scalars

and fermions in one null direction gives rise to an additional symmetry for their kinetic

terms upon shifting them by constant values. The gauging of this extra shift symmetry in

a superconformally-invariant manner has been analysed in some detail recently in [33, 36]

where it is found that, after fixing the gauged symmetry, the resulting lagrangian can be

simply expressed as the sum of the ungauged lagrangian plus a maximally supersymmetric

lagrangian involving the Faddeev-Popov ghosts for the shift symmetry. The BRST trans-

formations for this gauge-fixed theory mix the fields and ghosts in the two lagrangians as

expected and the BRST cohomology is found to be free of negative-norm states.

It would be good to understand whether this remarkable absence of negative-norm

states in the Bagger-Lambert theory for lorentzian Lie 3-algebras persists for inner products

of more indefinite signature, or at least whether one can establish clear 3-algebraic criteria

that would guarantee that the construction noted above could be employed for more general

algebras. The resulting moduli spaces for such theories and their possible M-theoretic

interpretation might also be of interest. In this paper we will begin to address some of

these questions.

Given the central rôle played by the Lie 3-algebra in the Bagger-Lambert theory,

we first recast some desirable physical properties, such as the possibility of decoupling

of negative-norm states and the scale and parity invariances of the model, in 3-algebraic

language. This then motivates the study of metric Lie 3-algebras in arbitrary signature

subject to some 3-algebraic criteria which can be explicitly checked for a given class of Lie

3-algebras or else built ab initio into a general construction of such Lie 3-algebras.

Indeed, by analogy with the structure theorem [45, 46] of metric Lie algebras, we

will prove that any metric Lie 3-algebra can be constructed from the one-dimensional and

simple Lie 3-algebras by iterating the operations of orthogonal direct sum and ‘double

extension’ (see Definition 10). Furthermore, following [31], we will classify Lie 3-algebras

with inner products of (2, p) signature and find the non-simple indecomposable ones to

fall into one of two distinct classes. We find that only one of these two classes describes

metric Lie 3-algebras with a canonical 4-form having no legs in precisely half of the null

directions of the 3-algebra (this is similar to what happened in the lorentzian case). For the

Bagger-Lambert theory with Lie 3-algebra in this class, this implies that the scalars and

fermions in these two null directions appear only in the free kinetic terms of the lagrangian,

suggesting that one might be able to remove the negative-norm states from the physical

Hilbert space here also after appropriate fixing of the gauged shift symmetries as in [33, 36].

We will consider the physical properties of such theories and their corresponding moduli

spaces in a forthcoming publication.

We should emphasise that even if the existence of extra shift symmetries allows one

to obtain a positive-definite Hilbert space, in general one would need to impose extra

constraints to make contact with the effective description of M2-branes. For instance,

– 3 –



J
H
E
P
0
8
(
2
0
0
8
)
0
4
5

one would also like the effective field theory to have no coupling constant. This would

be guaranteed provided the Lie 3-algebra admits a suitable outer automorphism which

absorbs the formal coupling dependence by rescaling the inner product in the Bagger-

Lambert lagrangian. With this in mind, we compute the Lie algebra of derivations (i.e.

the infinitesimal form of the automorphism group) of each class of metric Lie 3-algebra

in (2, p) signature and highlight, when it exists, the appropriate outer automorphism that

could be used to fix the coupling constant in the Bagger-Lambert theory. It would also be

desirable for the theory to be parity-invariant. This condition is satisfied provided the Lie

3-algebra admits an isometric anti-automorphism (which effectively reverses the sign of the

Lie 3-algebra structure constants in such a way that it compensates the parity inversion

on the M2-branes’ worldvolume). We will find four new classes of (2, p) signature metric

Lie 3-algebras that satisfy all of the above conditions.

We will also make some remarks on how the decoupling of negative-norm states might

work for metric Lie 3-algebras of general indefinite signature. The abstract criterion for

the existence of additional shift symmetries in half of the null directions will be that the

Lie 3-algebra should admit a maximally isotropic centre. We show that the obstruction

to having a maximally isotropic centre corresponds roughly speaking to the existence of a

simple ideal among the ingredients of the metric Lie 3-algebra. This allows us to give a

prescription for how to construct in principle all such metric Lie 3-algebras.

The paper is organised as follows. In section 2 we will briefly review the main features

of the Bagger-Lambert theory from the perspective of Lie 3-algebras. In other words, this

section will translate desirable physical properties of the theory into 3-algebraic criteria.

These will be revisited at the end of the paper in section 6 in light of the structural results

and classifications obtained in the paper. We interpret metricity and indecomposability

in terms of the Bagger-Lambert theory and show why these properties are desirable. We

then translate physical requirements such as ghost decoupling, absence of scale and parity

invariance into 3-algebraic criteria, which can be easily checked given either explicit metric

Lie 3-algebras as in section 4 or a general construction scheme as in section 3. After

this physical motivation, the paper contains a number of technical algebraic sections. In

section 3 we prove a structure theorem for metric Lie 3-algebras. After the observation

that every metric Lie 3-algebra is an orthogonal direct sum of indecomposables, we set

out to prove Theorem 12, which says that every indecomposable metric Lie 3-algebra is

either one-dimensional, simple or else it is obtained by double extending a (not necessarily

indecomposable) metric Lie 3-algebra by either a one-dimensional or simple Lie 3-algebra.

A simple induction argument then allows us to state Corollary 13 describing the class of

metric Lie 3-algebras as the class of Lie 3-algebras generated by the one-dimensional and

simple Lie 3-algebras under the operations of double extension and orthogonal direct sum.

The notion of double extension appears in Definition 10. Section 4 contains a classification

of indecomposable metric Lie 3-algebras of signature (2, p), culminating with Theorem 24.

They fall into two main types, which we call type Ia, defined in (4.7), and type IIIb,

defined in (4.10). They are distinguished by the fact that type IIIb possesses a maximally

isotropic centre, whereas type Ia does not. In fact, type IIIb is a very general class of

metric Lie 3-algebras and we deconstruct it into several non-isomorphic classes at the end
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of section 4.3.2. Section 5 contains the analysis of the Lie algebra of derivations of the

indecomposable metric Lie 3-algebras found in section 4, as well as to the subalgebras of

derivations which preserve (the conformal class of) the inner product. Finally in section 6

we revisit the 3-algebraic criteria obtained in section 2 in light of the explicit classification

and structural results obtained in the previous sections. We focus first on the absence of

ghosts, and using the structure results in section 3.2 we indicate how metric Lie 3-algebras

satisfying the ghost-decoupling criterion can be constructed. For the (2, p) metric Lie 3-

algebras classified in section 4, we determine the indecomposable ones which satisfy the

ghost decoupling criterion as well as the absence of a coupling constant and the parity

invariance of the theory. This results in four classes of indecomposable (2, p) metric Lie

3-algebras deserving of further study.

Acknowledgments

PdM is supported by a Seggie-Brown Postdoctoral Fellowship of the School of Mathematics

of the University of Edinburgh.

2. Bagger-Lambert theory in Lie 3-algebraic language

We will start by summarising how some of the physical properties of the Bagger-Lambert

theory relate to the general structure of metric Lie 3-algebras discussed in [31] and later

in this paper. In section 6 we will revisit these properties in light of our classification of

(2, p) signature metric Lie 3-algebras in section 4 and our structure theorem of section 3.

2.1 Brief review of Bagger-Lambert theory

Let us begin by reviewing some details of the Bagger-Lambert theory. Consider a metric Lie

3-algebra, with 3-bracket [−,−,−] and inner product 〈−,−〉 of general indefinite signature

(k, k+n) and define a null basis eA = (ui, vi, ea), with i = 1, . . . , k, a = 1, . . . , n, such that

〈ui, vj〉 = δij , 〈ui, uj〉 = 0 = 〈vi, vj〉 and 〈ea, eb〉 = δab. With respect to this basis, the com-

ponents of the canonical 4-form for the metric Lie 3-algebra are FABCD := 〈[eA, eB , eC ], eD〉

(indices will be raised and lowered using the invariant 3-algebra metric 〈eA, eB〉). The fields

in the Bagger-Lambert theory have components XA
I , ΨA, (Ãµ)

A
B = FABCDA

CD
µ , corre-

sponding respectively to the scalars (I = 1, . . . , 8 in the vector of the so(8) R-symmetry),

fermions and gauge field (µ = 0, 1, 2 on R
1,2 Minkowski space). Although the supersym-

metry transformations and equations of motion can be expressed in terms of (Ãµ)
A
B , the

lagrangian requires it to be expressed as above in terms of AABµ . Indeed, recall that the

Bagger-Lambert lagrangian [3] can be written

L = −1
2 〈DµXI ,D

µXI〉 +
i

2

〈
Ψ̄,ΓµDµΨ

〉
−
i

4
FABCD(Ψ̄AΓIJΨB)XC

I X
D
J

−
1

12
〈[XI ,XJ ,XK ], [XI ,XJ ,XK ]〉 + LCS , (2.1)

where

LCS = 1
2

(
AAB ∧ dÃAB +

2

3
AAB ∧ ÃAC ∧ ÃCB

)
, (2.2)
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and Dµφ
A = ∂µφ

A + (Ãµ)
A
Bφ

B defines the action on any field φ valued in V of the

derivative D that is gauge-covariant with respect to ÃAB . The fermion ΨA transforms as

a Majorana spinor in R
1,10 subject to the projection Γ012Ψ

A = −ΨA, where Γµ and ΓI
denote respectively the R

1,2 and R
8 components of the Clifford algebra on R

1,10 .

The integral of the lagrangian (2.1) is invariant under the supersymmetry transforma-

tions

δXA
I = i ǭΓIΨ

A

δΨA = DµX
A
I ΓµΓIǫ+

1

6
FABCDX

B
I X

C
J X

D
KΓIJKǫ

δ(Ãµ)
A
B = iFABCDX

C
I ǭΓµΓ

IΨD ,

where the parameter ǫ transforms as a Majorana spinor on R
1,10 subject to the projec-

tion Γ012ǫ = ǫ. Using the equations of motion obtained from (2.1), these supersymmetry

transformations are found to close, up to translations in R
1,2 and gauge transformations.

2.2 Degeneracy implies decoupling

We have been assuming throughout that the Lie 3-algebra inner product is nondegenerate.

Recall that the supersymmetry transformations and equations of motion for the Bagger-

Lambert theory do not require the Lie 3-algebra to admit an inner product at all. It is the

existence of a lagrangian which realises all the symmetries and gives rise to all the correct

equations of motion appearing in the on-shell closure of supersymmetry algebra that seems

to require that the Lie 3-algebra should admit an invariant inner product. As shown in

remark 8 of [31], if we allowed this invariant inner product to be degenerate then the

corresponding canonical 4-form F can have no legs along any of the degenerate directions.

Since it is this 4-form which dictates the structure of interactions in the Bagger-Lambert

lagrangian (2.1), it is clear that only the fields in the nondegenerate directions can appear

in the interactions. Moreover, even the free scalar and fermion kinetic terms cannot appear

along the degenerate directions of the inner product. Hence there is always a consistent

truncation of the theory to the quotient Lie 3-algebra (with nondegenerate inner product)

along the nondegenerate directions. Therefore, in terms of characterising which kinds of

new interactions can occur in the Bagger-Lambert lagrangian, nothing is lost by assuming

a nondegenerate inner product.

2.3 Decomposability implies decoupling

By definition, a decomposable metric Lie 3-algebra V = V1 ⊕ V2 can be written as the

orthogonal direct sum of two metric Lie 3-algebras V1 and V2 (with [V1, V2, V ] = 0). This

implies that neither the inner product 〈−,−〉 nor the canonical 4-form F of a decomposable

Lie 3-algebra can ever have ‘mixed legs’ in both V1 and V2. Hence the Bagger-Lambert

lagrangian and supersymmetry transformations for V = V1 ⊕ V2 completely decouple in

terms of the individual factors V1 and V2. Thus, as one would expect, the indecomposable

metric Lie 3-algebras really are the basic building blocks for the Bagger-Lambert theory.

– 6 –
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2.4 Maximally isotropic centres, shift symmetries and decoupling of ghosts

The free kinetic terms for the scalars and fermions

k∑

i=1

(
−∂µX

ui

I ∂
µXvi

I + i Ψ̄uiΓµ∂µΨ
vi

)
− 1

2∂µX
a
I ∂

µXa
I +

i

2
Ψ̄aΓµ∂µΨ

a (2.3)

are the only terms which do not couple to components FABCD of the canonical 4-form

in (2.1). The (ui, vi) components correspond to the 2k null directions in the Lie 3-algebra

and are related to the k kinetic terms with the ‘wrong’ sign in the lagrangian that need to

be exorcised.

From (2.1) we see that there are two ways in which the fields in the Bagger-Lambert

theory couple to the components of F in the interaction terms in the lagrangian; either

linearly via contraction with FABCD or quadratically via contraction with FABCGFDEF
G.

The first type gives rise to the X2Ψ2, AX2, AΨ2 interactions and the free kinetic term for

the gauge field. The second type gives rise to the X6, A2X2 and A3 interactions.

Clearly a sufficient condition for the existence of extra shift symmetries for, say, the

null components Xvi and Ψvi in (2.3) would be that these fields do not appear in any of

the interactions. If this condition is met for all k of these null components then a naive

counting argument would suggest that gauge-fixing the theory obtained from gauging these

extra shift symmetries, à la [33, 36], should have a BRST cohomology free of negative-norm

states.

The question of whether the criterion above is met can be posed at the level of the

Lie 3-algebra as follows. Of the various terms in the Bagger-Lambert lagrangian, the

most restrictive in terms of satisfying the condition above comes from the quartic X2Ψ2

scalar-fermion interaction. For this to not involve any of the null components Xvi and Ψvi

requires FviABC = 0. This condition on the Lie 3-algebra is equivalent to saying that the

vi are central, whence they span a maximally isotropic subspace of the centre. Notice that

FviABC = 0 further implies FviABGFCDE
G = 0 and so, as required, the fields Xvi , Ψvi in

these k null directions do not appear in any of the interactions (furthermore AviA
µ does not

appear at all in the lagrangian).

It is worth remarking that the criterion above is satisfied for all indecomposable

lorentzian Lie 3-algebras except the unique simple one S1,3. This follows from Theorem 9

in [31] where, in the Witt basis (u, v, ea), the canonical 4-form has only the legs Fuabc = fabc
(where fab

c are the structure constants of a compact semisimple Lie algebra). On the other

hand S1,3 has a non-vanishing Fuvab component, thus violating the condition above. We

will notice a similar structure in Theorem 24 below.

2.5 Conformal automorphisms and the coupling constant

The formal coupling dependence of the interactions in the Bagger-Lambert theory can

be brought to an overall factor 1
κ2 multiplying the lagrangian by rescaling the canonical

4-form FABCD → κ2FABCD followed by the field redefinitions XA
I → 1

κ
XA
I , ΨA → 1

κ
ΨA

and AABµ → 1
κ2A

AB
µ . Since the scalars and fermions are valued in V , inspection of all

the terms in the lagrangian not involving the gauge field shows that the overall 1
κ2 factor

– 7 –
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can be absorbed for these terms if the Lie 3-algebra admits a conformal automorphism

ϕ : V → V with 〈ϕ(x), ϕ(y)〉 = κ2 〈x, y〉 for all x, y ∈ V . This would then follow by

redefining XI → ϕ(XI) and Ψ → ϕ(Ψ) in the lagrangian. This induces the transformation

Ãµ → ϕÃµϕ
−1 on the gauge field Ãµ that appears in the covariant derivatives. The

Chern-Simons term then requires Aµ → ϕAµϕ
t, which indeed follows from the definition

(Ãµ)
A
B = FABCDA

CD
µ , in order to get the correct scaling for all the terms involving the

gauge field in the Bagger-Lambert lagrangian.

Let us recall how this works for the case of indecomposable lorentzian Lie 3-algebras,

as noted in [21, 22], using the language of Proposition 11 in [31]. Relative to the Witt

basis (u, v, ea) noted above, the appropriate conformal automorphism maps ϕ(u) = βu,

ϕ(v) = β−3v and ϕ(ea) = β−1ea, which rescales the inner product by a factor of β−2

and so absorbs the coupling if we take β = κ−1. To be completely explicit, XI → ϕ(XI)

transforms the components of the scalars as Xu
I → κ−1Xu

I , Xv
I → κ3Xv

I , X
a
I → κXa

I (and

likewise for the fermions), whereas Aµ → ϕAµϕ
t transforms the components of the gauge

field as Auvµ → κ2Auvµ , Auaµ → Auaµ , Avaµ → κ4Avaµ , Aabµ → κ2Aabµ . (Recall though that the

central components AvAµ do not appear in the lagrangian.) The components Ba := 1
2fabcA

bc

and Aa := Aua of the gauge field appear in the Chern-Simons term of (2.1) as a so-called

BF term (with F being the field strength of gauge field A here). This automorphism then

matches equation (2.30) in [21] if we identify their +,− and g with our u, v and κ.

In section 6 we will present a similar story for several of the classes of metric Lie

3-algebras in (2, p) signature in section 4.

2.6 Isometric anti-automorphisms and parity invariance

Recall [4] that the effective field theory on the worldvolume of M2-branes is expected to

be invariant under the Z2 symmetry generated by a parity inversion. Despite the existence

of a Chern-Simons term, this condition is satisfied for the Bagger-Lambert theory based

on the euclidean simple Lie 3-algebra S0,4 (see [8, 10]) and for the class of indecomposable

lorentzian Lie 3-algebras in [21, 22].

Following [3, 8], let us define a parity inversion to map the R
1,2 coordinates

(x0, x1, x2) → (x0, x1,−x2) (thus reversing the orientation on R
1,2) and mapping spinors

Ψ → Γ2Ψ. This implies that the spinor bilinear terms Ψ̄AΓµ∂µΨ
B and Ψ̄AΓIJΨB in the

Bagger-Lambert Lagrangian (2.1) are respectively even and odd under this parity transfor-

mation. The structure of covariant derivatives in (2.1) further implies that Ã0, Ã1 should

be parity-even whilst Ã2 is parity-odd. Given these parity assignments, inspection of the

terms in the Bagger-Lambert Lagrangian (2.1) leads one to deduce that a sufficient condi-

tion for invariance is that the Lie 3-algebra admits an isometric anti-automorphism, i.e. a

linear map γ : V → V obeying 〈γx, γy〉 = 〈x, y〉 and [γx, γy, γz] = −γ[x, y, z] for all x, y, z

in V . (This results in effectively reversing the sign of all the structure constants in the Lie 3-

algebra, a condition already noted in [3] for parity-invariance.) The transformation γ maps

XI → γXI and Ãµ → γÃµγ
−1, which implies Aµ → −γAµγ

t. Combining this transforma-

tion with the action of parity on the fields thus leaves (2.1) invariant. Hence the criterion

of parity-invariance can be reduced to the existence of an isometric anti-automorphism of

the Lie 3-algebra. Notice that the composition of any two isometric anti-automorphisms

– 8 –
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is an isometric automorphism, i.e. a symmetry of (2.1) on its own. Thus the generator of

the isometric anti-automorphism needed for parity-invariance is essentially unique modulo

a symmetry of the Lagrangian.

For the euclidean case S0,4, defined with respect to an orthonormal basis (e1, e2, e3, e4),

the appropriate isometric anti-automorphism can be taken to be the map γ(e1, e2, e3, e4) =

(−e1,−e2,−e3, e4), as was clarified in [10]. For the lorentzian case discussed in [21, 22], rel-

ative to the Witt basis (u, v, ea) we have defined above, the appropriate anti-automorphism

maps γ(u, v, ea) = (u, v,−ea). Reading off the corresponding transformations of the com-

ponents of the fields above, one finds that Xa
I , Ψa, Auvµ and Aabµ are odd under the action

of γ whilst all the other components are even (in agreement with [21]).

2.7 Summary

In summary, we are interested in classifying or understanding how to construct indecompos-

able metric Lie 3-algebras admitting a maximally isotropic centre, conformal derivations

and isometric anti-automorphisms. In the next sections we will prove a structure theorem

for metric Lie 3-algebras, classify those with signature (2, p) and study their Lie algebras

of (conformal) derivations. Finally in section 6, we will revisit these conditions in light of

the above results.

3. Metric Lie 3-algebras and double extensions

Recall that a (finite-dimensional, real) Lie 3-algebra consists of a finite-dimensional real

vector space V together with a linear map Φ : Λ3V → V , denoted simply as a 3-bracket,

obeying a generalisation of the Jacobi identity. To define it, let us recall that an endomor-

phism D ∈ EndV is said to be a derivation if

D[x1, x2, x3] = [Dx1, x2, x3] + [x1,Dx2, x3] + [x1, x2,Dx3] ,

for all xi ∈ V . Then (V,Φ) defines a Lie 3-algebra if the endomorphisms adx1,x2
∈ EndV ,

defined by adx1,x2
y = [x1, x2, y], are derivations:

[x1, x2, [y1, y2, y3]] = [[x1, x2, y1], y2, y3] + [y1, [x1, x2, y2], y3] + [y1, y2, [x1, x2, y3]] , (3.1)

for all yi ∈ V . We call it the 3-Jacobi identity or, in the present context, the fundamental

identity. The vector space of derivations is a Lie subalgebra of gl(V ) denoted DerV . The

derivations adx1,x2
∈ Der V span the ideal adV ⊳ DerV consisting of inner derivations.

We recall that a metric Lie 3-algebra is a triple (V,Φ, b) consisting of a finite-

dimensional real Lie 3-algebra (V,Φ) together with a nondegenerate symmetric bilinear

form b : S2V → R, denoted simply by 〈−,−〉, subject to the invariance condition of the

inner product

〈[x1, x2, y1], y2〉 = −〈[x1, x2, y2], y1〉 , (3.2)

for all xi, yi ∈ V .
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Given two metric Lie 3-algebras (V1,Φ1, b1) and (V2,Φ2, b2), we may form their or-

thogonal direct sum (V1 ⊕ V2,Φ1 ⊕ Φ2, b1 ⊕ b2), by declaring that

[x1, x2, y] = 0 and 〈x1, x2〉 = 0 ,

for all xi ∈ Vi and all y ∈ V1 ⊕ V2. The resulting object is again a metric Lie 3-algebra. A

metric Lie 3-algebra is said to be indecomposable if it is not isomorphic to an orthogonal

direct sum of metric Lie 3-algebras (V1 ⊕ V2,Φ1 ⊕ Φ2, b1 ⊕ b2) with dimVi > 0. In order

to classify the metric Lie 3-algebras, it is clearly enough to classify the indecomposable

ones. In this section we will prove a structure theorem for indecomposable Lie 3-algebras.

We will prove that they are constructed from the simple and the one-dimensional Lie 3-

algebras by iterating two constructions: the orthogonal direct sum just defined and the

“double extension” to be defined below.

3.1 Basic notions and notation

From now on let (V,Φ) be a Lie 3-algebra. Given subspaces Wi ⊂ V , we will let [W1W2W3]

denote the subspace of V spanned by elements [w1, w2, w3] ∈ V , where wi ∈Wi.

We will use freely the notions of subalgebra, ideal and homomorphisms as reviewed

in [31]. In particular a subalgebra W < V is a subspace W ⊂ V such that [WWW ] ⊂W ,

whereas an ideal I ⊳ V is a subspace I ⊂ V such that [IV V ] ⊂ I. A linear map φ : V1 →

V2 between Lie 3-algebras is a homomorphism if φ[x1, x2, x3] = [φ(x1), φ(x2), φ(x3)],

for all xi ∈ V1. An isomorphism is a bijective homomorphism. There is a one-to-one

correspondence between ideals and homomorphisms and all the standard theorems hold.

In particular, intersection and sums of ideals are ideals. An ideal I ⊳ V is said to be

minimal if any other ideal J ⊳ V contained in I is either 0 or I. Dually, an ideal I ⊳ V

is said to be maximal if any other ideal J ⊳ V containing I is either V and I. A Lie

3-algebra is said to be simple if it has no proper ideals and dimV > 1.

Lemma 1. If I ⊳ V is a maximal ideal, then V/I is simple or one-dimensional.

Simple Lie 3-algebras have been classified.

Theorem 2 ([47, §3]). A simple real Lie 3-algebra is isomorphic to one of the Lie 3-algebras

defined, relative to a basis (ei)i=1,2,3,4, by

[e1, . . . , êi, . . . ,e4] = (−1)iεiei , (3.3)

where a hat denotes omission and where the εi are signs.

It is plain to see that simple real Lie 3-algebras admit invariant inner products of any

signature. Indeed, the Lie 3-algebra in (3.3) leaves invariant the diagonal inner product with

entries (ε1, . . . , ε4). We will let Sp,q denote the simple metric Lie 3-algebra with signature

(p, q). There are, up to homothety, precisely three: S0,4, S1,3 and S2,2, corresponding to

euclidean, lorentzian and split signatures, respectively. The Lie 3-bracket of Sp,q is given

relative to a basis (e1,e2,e3,e4) by (3.3) where the signs εi are given by (++++) for S0,4,
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(− + ++) for S1,3 and (− − ++) for S2,2. Implicit in the notation is a choice of invariant

inner product, which is given by 〈ei,ej〉 = λεiδij , for some λ > 0.

Complementary to the notion of (semi)simplicity is that of solvability. As shown by

Kasymov [48], there are more than one notions of solvability for Lie 3-algebras. However

we will use here the original notion introduced by Filippov [43]. Let I⊳V be an ideal. We

define inductively a sequence of ideals

I(0) = I and I(k+1) = [I(k)I(k)I(k)] ⊂ I(k) . (3.4)

We say that I is solvable if I(s) = 0 for some s, and we say that V is solvable if it is

solvable as an ideal of itself. If I, J ⊳ V are solvable ideals, so is their sum I + J , leading

to the notion of a maximal solvable ideal RadV , known as the radical of V . A Lie 3-

algebra V is said to be semisimple if RadV = 0. Ling [47] showed that a semisimple Lie

3-algebra is isomorphic to the direct sum of its simple ideals. The following result is due

to Filippov [43] and can be paraphrased as saying that the radical is a characteristic ideal.

Theorem 3 ([43, Theorem 1]). Let V be a Lie 3-algebra. Then DRadV ⊂ RadV for

every derivation D ∈ DerV .

We say that a subalgebra L < V is a Levi subalgebra if V = L ⊕ RadV as vector

spaces. Ling showed that, as in the theory of Lie algebras, Lie 3-algebras admit a Levi

decomposition.

Theorem 4 ([47, Theorem 4.1]). Let V be a Lie 3-algebra. Then V admits a Levi subal-

gebra.

A further result of Ling’s which we shall need is the following.

Theorem 5 ([47, §2]). Let V be a Lie 3-algebra. Then V is semisimple if and only if the

Lie algebra adV of inner derivations is semisimple and all derivations are inner, so that

Der V = adV .

In turn this allows us to prove the following useful result.

Proposition 6. Let 0 → A → B → C → 0 be an exact sequence of Lie 3-algebras. If A

and C are semisimple, then so is B.

Proof. Since A is semisimple, Theorem 5 says that adA is semisimple. B is a representation

of adA, hence fully reducible. Since A is an adA-subrepresentation of of B, we have

B = A⊕ C, where C is a complementary adA-subrepresentation. Since A⊳B is an ideal

(being the kernel of a homomorphism), adA(C) = 0, whence [AAC] = 0.

The subspace C is actually a subalgebra, since the component [CCC]A of [CCC] along

A is adA-invariant by the 3-Jacobi identity and the fact that C is adA-invariant. This

means that [CCC]A is central in A, but A is semisimple, whence it must vanish. Hence,

[CCC] ⊂ C. Since the projection B → C maps C isomorphically to C, we see that this

isomorphism is one of Lie 3-algebras, hence C < B is semisimple and indeed [CCC] = C.
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It remains to show that [ACC] = 0. For ci ∈ C, the restriction of adc1,c2 to A is a

derivation of A, which belongs to adA since for A semisimple, all derivations are inner.

Since C is adA-invariant, the 3-Jacobi identity says that adc1,c2 is adA-invariant, whence

it belongs to the centre of adA. However adA is semisimple and hence its centre is 0.

In summary, B = A⊕ C as a Lie 3-algebra. Since A and C are semisimple and hence

a sum of simple ideals, so is B.

A useful notion that we will need is that of a representation of a Lie 3-algebra. A

representation of Lie 3-algebra V on a vector space W is a Lie 3-algebra structure on

the direct sum V ⊕W satisfying the following three properties:

1. the natural embedding V → V ⊕W sending v 7→ (v, 0) is a Lie 3-algebra homomor-

phism, so that [V V V ] ⊂ V is the original 3-bracket on V ;

2. [V VW ] ⊂W ; and

3. [VWW ] = 0.

The second of the above conditions says that we have a map ad V → EndW from inner

derivations of V to linear transformations on W . The 3-Jacobi identity for V ⊕W says

that this map is a representation of the Lie algebra adV . Viceversa, any representation

ad V → EndW defines a Lie 3-algebra structure on V ⊕W extending the Lie 3-algebra

structure of V and demanding that [VWW ] = 0. Taking W = V gives rise to the adjoint

representation, whereas taking W = V ∗ gives rise to the coadjoint representation,

where if α ∈ V ∗ then

[v1, v2, α] = β ∈ V ∗ where β(v) = −α ([v1, v2, v]) , (3.5)

for all v, vi ∈ V .

Let us now introduce an inner product, so that (V,Φ, b) is a metric Lie 3-algebra.

If W ⊂ V is any subspace, we define

W⊥ = {v ∈ V |〈v,w〉 = 0 ,∀w ∈W} .

Notice that (W⊥)⊥ = W . We say that W is nondegenerate, if W ∩W⊥ = 0, whence

V = W ⊕ W⊥; isotropic, if W ⊂ W⊥; and coisotropic, if W ⊃ W⊥. Of course, in

positive-definite signature, all subspaces are nondegenerate.

An equivalent criterion for decomposability is the existence of a proper nondegenerate

ideal: for if I ⊳ V is nondegenerate, V = I ⊕ I⊥ is an orthogonal direct sum of ideals. For

the proofs of the following results, the reader is asked to consult [31, §2.2].

Lemma 7. Let I ⊳ V be a coisotropic ideal of a metric Lie 3-algebra. Then I/I⊥ is a

metric Lie 3-algebra.

If I ⊳ V is an ideal, the centraliser Z(I) is defined by the condition [Z(I)I V ] = 0.

Taking V as an ideal of itself, we arrive at the centre Z(V ) of V .
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Lemma 8. Let V be a metric Lie 3-algebra. Then the centre is the orthogonal subspace to

the derived ideal; that is, [V V V ] = Z(V )⊥.

Proposition 9. Let V be a metric Lie 3-algebra and I ⊳ V be an ideal. Then

1. I⊥ ⊳ V is also an ideal;

2. I⊥ ⊳ Z(I); and

3. if I is minimal then I⊥ is maximal.

3.2 Structure of metric Lie 3-algebras

We now investigate the structure of metric Lie 3-algebras. If a Lie 3-algebra V is not

simple or one-dimensional, then it has a proper ideal and hence a minimal ideal. Let I⊳V

be a minimal ideal of a metric Lie 3-algebra. Then I ∩ I⊥, being an ideal contained in

I, is either 0 or I. In other words, minimal ideals are either nondegenerate or isotropic.

If nondegenerate, V = I ⊕ I⊥ is decomposable. Therefore if V is indecomposable, I is

isotropic. Moreover, by Proposition 9 (2), I is abelian and furthermore, because I is

isotropic, [I I V ] = 0.

It follows that if V is euclidean and indecomposable, it is either one-dimensional or

simple, whence of the form (3.3) with all εi = 1. This result, originally due to Nagy [44]

(see also [17, 18]), was conjectured in [49].

Let V be an indecomposable metric Lie 3-algebra. Then V is either simple, one-

dimensional (provided the index of the inner product is < 2) or possesses an isotropic

proper minimal ideal I which obeys [I I V ] = 0. The perpendicular ideal I⊥ is maximal

and hence by Lemma 1, U := V/I⊥ is simple or one-dimensional, whereas by Lemma 7,

W := I⊥/I is a metric Lie 3-algebra. The inner product on V induces a nondegenerate

pairing g : U ⊗ I → R. Indeed, let [u] = u+ I⊥ ∈ U and v ∈ I. Then we define g([u], v) =

〈u, v〉, which is clearly independent of the coset representative for [u]. In particular, I ∼= U
∗

is either one- or 4-dimensional. If the signature of the inner product of W is (p, q), that of

V is (p + r, q + r) where r = dim I = dimU .

There are two possibilities for U : either it is one-dimensional or else it is simple. We

will treat both cases separately.

3.2.1 U is one-dimensional

If the quotient Lie 3-algebra U = V/I⊥ is one-dimensional, so is the minimal ideal I. Let

u ∈ V be such that u 6∈ I⊥, whence its image in U generates it. Because I ∼= U
∗

is

induced by the inner product, there is v ∈ I such that 〈u, v〉 = 1. The subspace spanned

by u and v is therefore nondegenerate, and hence as a vector space we have an orthogonal

decomposition V = R(u, v) ⊕W , where W is the perpendicular complement of R(u, v). It

is clear that W ⊂ I⊥, and that I⊥ = I ⊕W as a vector space. Indeed, the projection

I⊥ →W maps W isomorphically onto W .
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From Proposition 9 (2), it is immediate that [u, v, x] = 0 = [v,w1, w2], for all wi ∈W ,

whence v is central. Metricity then implies that the only nonzero 3-brackets take the form

[u,w1, w2] = [w1, w2]

[w1, w2, w3] = −〈[w1, w2], w3〉 v + [w1, w2, w3]W ,
(3.6)

which defines [w1, w2] and [w1, w2, w3]W and where wi ∈ W . The 3-Jacobi identity is

equivalent to the following two conditions:

1. [w1, w2] defines a Lie algebra structure onW , which leaves the inner product invariant

due to the skewsymmetry of 〈[w1, w2], w3〉; and

2. [w1, w2, w3]W defines a metric Lie 3-algebra structure on W which is invariant under

the Lie algebra structure.

We will see below that this says that V is the double extension of the metric Lie

3-algebra W by the one-dimensional Lie 3-algebra Ū .

3.2.2 U is simple

Consider I⊥ as a Lie 3-algebra in its own right and let R = Rad I⊥ denote its radical.

By Theorem 4, I⊥ admits a Levi subalgebra L < I⊥. Since I⊥ ⊳ V and R ⊳ I⊥ is a

characteristic ideal, R ⊳ V . Indeed, for all xi ∈ V , adx1,x2
is a derivation of I⊥ (since

I⊥ ⊳ V ) and by Theorem 3, it preserves R. Let M = V/R. Notice that

U = V/I⊥ ∼= (V/R)/(I⊥/R) = M/L .

Since L and U are semisimple, Proposition 6 says that so is M and moreover that M ∼=

L ⊕ U . This means that R is also the radical of V , whence M is a Levi factor of V .

This discussion is summarised by the following commutative diagram with exact rows and

columns:
0 0
y

y

R R
y

y

0 −−−−→ I⊥ −−−−→ V −−−−→ U −−−−→ 0
y

y
∥∥∥

0 −−−−→ L −−−−→ M −−−−→ U −−−−→ 0
y

y

0 0

The map M → U admits a section, so that M has a subalgebra Ũ isomorphic to U and

such that M = Ũ⊕L. Then the vertical map V →M also admits a section, whence there is

a subalgebra U < V isomorphic to U such that V = I⊥⊕U (as vector space). Furthermore,
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the inner product on V pairs I and U nondegenerately, whence I ⊕ U is a nondegenerate

subspace. Let W denote its perpendicular complement, whence V = W ⊕ I ⊕ U . Clearly

I⊥ = W ⊕ I, whence the canonical projection I⊥ →W maps W isomorphically onto W .

Let us now write the possible 3-brackets for V = W⊕I⊕U . First of all, by Proposition 9

(2), [V, I⊥, I] = 0. Since U < V , [UUU ] ⊂ U and since I is an ideal, [UUI] ⊂ I. Similarly,

since W ⊂ I⊥ and I⊥ ⊳ V is an ideal, [WWW ] ⊂W ⊕ I. We write this as

[w1, w2, w3] := [w1, w2, w3]W + ϕ(w1, w2, w3) ,

where [w1, w2, w3]W defines an 3-bracket on W , which is isomorphic to the Lie 3-bracket

of W = I⊥/I, and ϕ : Λ3W → I is to be understood as an abelian extension. It remains

to understand [UWW ] and [UUW ]. First of all, we notice that because W ⊂ I⊥ which is

an ideal, a priori [UWW ] ⊂W ⊕ I and [UUW ] ⊂W ⊕ I. However,

〈[UUW ], U〉 = −〈[UUU ],W 〉 = 0

whence the component of [UUW ] along I vanishes, so that [UUW ] ⊂ W . Furthermore,

the 3-Jacobi identity makes W into an adU -representation and ϕ into an adU -equivariant

map.

Similarly,

〈[UWW ],W 〉 = −〈[WWW ], U〉 ,

whence the W component of [UWW ] is determined by the map ϕ defined above; whereas

the I component

〈[UWW ], U〉 = 〈[UUW ],W 〉

is thus determined by the action of adU on W .

In summary, we have the following nonzero 3-brackets

[UUU ] ⊂ U [UUI] ⊂ I [UUW ] ⊂W [UWW ] ⊂W ⊕ I [WWW ] ⊂W ⊕ I ,

which we will proceed to explain. The first bracket is simply the fact that U < V is a

subalgebra, whereas the second makes I into a representation of U . In fact, I ∼= U∗ is the

coadjoint representation (3.5). The third bracket defines an action of adU on W and this

also determines the I-component of the fourth bracket. The W -component of the fourth

bracket is determined by the I-component of the last bracket. The last bracket defines

a Lie 3-algebra structure on W ⊕ I, which is an abelian extension of the Lie 3-algebra

structure on W by a “cocycle” ϕ : Λ3W → I. The inner product is such that 〈W,W 〉 and

〈U, I〉 are nondegenerate and the only other nonzero inner product is 〈U,U〉 which can be

any adU -invariant symmetric bilinear form on U , not necessarily nondegenerate.

Similarly to the case when U is one-dimensional, we will interpret V as the double

extension of the metric Lie 3-algebra W by the simple Lie 3-algebra U .

More generally we have the following definition.

Definition 10. Let W be a metric Lie 3-algebra and let U be a Lie 3-algebra. Then by

the double extension of W by U we mean the metric Lie 3-algebra on the vector space

W ⊕ U ⊕ U∗ with the following nonzero 3-brackets:
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• [UUU ] ⊂ U being the bracket of the Lie 3-algebra U ;

• [UUU∗] ⊂ U∗ being the coadjoint action of adU on U∗;

• [UUW ] ⊂W being the action of adU on W ;

• [UWW ] ⊂W ⊕ U∗, where the U∗ component is related to the previous bracket by

〈[u1, w1, w2], u2〉 = 〈[u1, u2, w1], w2〉 .

• [WWW ] ⊂ W ⊕ U∗, where the W component is the bracket of the Lie 3-algebra W

and the U∗ component is related to the W component of the previous bracket by

〈[w1, w2, w3], u1〉 = 〈u1, w1, w2], w3〉 .

These brackets are subject to the 3-Jacobi identity. Two of these identities can be in-

terpreted as saying that the bracket [UUW ] ⊂ W defines a Lie algebra homomorphism

adU → Der0W , where Der0W is the Lie algebra of skewsymmetric derivations of the Lie

3-algebra W , whereas the map Λ3W → U∗ defining the U∗ component of the [WWW ]

bracket is adU -equivariant. We have not found similarly transparent interpretations for

the other Jacobi identities. The above 3-brackets leave invariant the inner product on V

with components

• 〈W,W 〉, being the inner product on the metric Lie 3-algebra W ;

• 〈U,U∗〉, being the natural dual pairing; and

• 〈U,U〉, being any adU -invariant symmetric bilinear form.

Remark 11. It can be shown that if U is simple and [UUW ] = 0 then the resulting double

extension is decomposable. Indeed, if [UUW ] = 0, then by Jacobis the U∗ component in

[WWW ] would have to be invariant under adU . If U is simple, then this means that this

component is absent, whence W would be a subalgebra and indeed an ideal since the U∗

component in [UWW ] is also absent. But W is nondegenerate, whence it decomposes V .

In summary, we have proved the following result.

Theorem 12. Every indecomposable metric Lie 3-algebra V is either one-dimensional,

simple or else it is the double extension of a metric Lie 3-algebra W by a one-dimensional

or simple Lie 3-algebra U .

Any metric Lie 3-algebra will be an orthogonal direct sum of indecomposables, each

one being either one-dimensional, simple or a double extension of a metric Lie 3-algebra,

which itself is an orthogonal direct sum of indecomposables of strictly lower dimension.

Continuing in this way, we arrive at the following characterisation.

Corollary 13. The class of metric Lie 3-algebras is generated by the simple and one-

dimensional Lie 3-algebras under the operations of orthogonal direct sum and double ex-

tension.
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It is clear that the subclass of euclidean metric Lie 3-algebras is generated by the simple

and one-dimensional euclidean Lie 3-algebras under orthogonal direct sum, since double

extension always incurs in indefinite signature. The lorentzian indecomposables admit at

most one double extension by a one-dimensional Lie 3-algebra and are easy to classify [31].

The indecomposables of signature (2, p) will admit at most two double extensions by one-

dimensional Lie 3-algebras. We will find that there are three kinds of such metric Lie

algebras: a simple Lie 3-algebra, one which can be written as a double extension and one

which is the result of iterating two double extensions.

4. Metric Lie 3-algebras with signature (2, p)

In [31] we classified the lorentzian Lie 3-algebras and in this section we will continue by

classifying the metric Lie 3-algebras with signature (2, p). Clearly any such metric Lie

3-algebra will be isomorphic to one of two types:

• V0 ⊕ V1 ⊕ . . . , where V0 is an indecomposable metric Lie 3-algebra of signature (2, ∗)

and Vi≥1 are indecomposable euclidean Lie 3-algebras; or

• V1 ⊕ V2 ⊕V3 ⊕ . . . , where V1,2 are indecomposable lorentzian Lie 3-algebras and Vi≥3

are indecomposable euclidean Lie 3-algebras.

The indecomposable euclidean Lie 3-algebras have been classified in [44] (see also [17,

18]) and the indecomposable lorentzian Lie 3-algebras have been classified in [31]. It

remains to classify the indecomposable metric Lie 3-algebra of signature (2, ∗) and this is

what the rest of this section is devoted to.

4.1 Notation

In this section we will use the following notation. Lie 3-algebras will be denoted by capital

letters V,W, . . ., whereas Lie algebras will be denoted by lowercase fraktur letters g, h, . . ..

If k is a metric Lie algebra, we will let W (k) denote the metric Lie 3-algebra W (k) =

Ru ⊕ Rv ⊕ k with inner product which extends the ad-invariant inner product on k by

declaring u, v perpendicular to k and, in addition, 〈u, u〉 = 0 = 〈v, v〉, 〈u, v〉 = 1. The Lie

3-brackets of W (k) are given in terms of the inner product and the Lie bracket of k by

[u, x, y] = [x, y] and [x, y, z] = −〈[x, y], z〉 v , (4.1)

for all x, y, z ∈ k. This class of Lie 3-algebras was discovered independently in [20 – 22].

We will mostly be interested in the case where k is a reductive Lie algebra with a positive-

definite inner product, so that W (k) is lorentzian. In this case, if k is not semisimple, then

W (k) will be decomposable, since any abelian summands of k will factorise. Indeed, if we

let k = s ⊕ a with s semisimple and a abelian, then W (s ⊕ a) = W (s) ⊕A, where A is the

abelian Lie 3-algebra sharing the same underlying vector space as the abelian Lie algebra

a.
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4.2 Structure of metric Lie 3-algebras with signature (2, p)

Let V be a finite-dimensional indecomposable metric Lie 3-algebra of signature (2, p). The

results of section 3.2 allow us to conclude that one of two situations can happen: either V is

simple, whence isomorphic to S2,2, or V will be the double extension by a one-dimensional

Lie 3-algebra U of a lorentzian Lie 3-algebra W . In other words, V = R(u, v) ⊕W , where

〈u, u〉 = 〈v, v〉 = 0 and 〈u, v〉 = 1 and u, v ⊥W , and with 3-brackets

[u, x, y] = [x, y] and [x, y, z] = [x, y, z]W − 〈[x, y], z〉 v , (4.2)

for all x, y, z ∈ W , which defines [x, y] and where [x, y, z]W are the 3-brackets of W . The

3-Jacobi identity is equivalent to [−,−] : Λ2W → W being a Lie (2-)bracket which leaves

invariant the Lie 3-bracket [−,−,−]W . Furthermore, both the Lie algebra and the Lie

3-algebra structures on W preserve the lorentzian inner product.

W is therefore simultaneously a lorentzian Lie algebra and a lorentzian Lie 3-algebra,

relative to the same inner product. We shall denote it W as a Lie 3-algebra and as a vector

space, but w as a Lie algebra. As Lie 3-algebra we may write it as W = W0 ⊕W1, where

W0 is an indecomposable lorentzian Lie 3-algebra and W1 is a euclidean Lie 3-algebra. By

the results of [31], W0 can be either one-dimensional, isomorphic to S1,3 or else isomorphic

to W (s), where s is a euclidean semisimple Lie algebra, whereas by the results of [44] (see

also [17, 18]), W1
∼= A ⊕ S0,4 ⊕ · · · ⊕ S0,4, where A is an abelian euclidean Lie 3-algebra.

In summary, we have the following possibilities for W , as a Lie 3-algebra:

• W = A⊕ S0,4 ⊕ · · · ⊕ S0,4, where A is a lorentzian abelian Lie 3-algebra;

• W = A⊕ S1,3 ⊕ S0,4 ⊕ · · · ⊕ S0,4, where A is a euclidean abelian Lie 3-algebra; and

• W = W (k) ⊕ S0,4 ⊕ · · · ⊕ S0,4, where k = s ⊕ a is a euclidean reductive Lie algebra.

As a Lie algebra, the adjoint representation of w on W preserves both the inner

product and the 3-algebra structure. It follows from the results of [31, §3.2] that the adjoint

representation of w preserves the subspaces corresponding to the simple factors and hence

also their perpendicular complement. This means that each summand of the vector space

W is a subrepresentation under the adjoint representation and hence an ideal. Furthermore,

it also follows from the results of [31, §3.2], that any summands in W isomorphic to S0,4

factor out, decomposing V in the process. Hence for indecomposable V , they have to be

absent. This means that the possibilities for W as a Lie 3-algebra become

(I) W = A, where A is a lorentzian abelian Lie 3-algebra;

(II) W = A⊕ S1,3, where A is a euclidean abelian Lie 3-algebra; and

(III) W = W (s ⊕ a);

whereas for W as a Lie algebra, we find that in the case (I), w is a lorentzian Lie algebra

of dimension dimA; whereas in case (II), w = g⊕ h0, where g is a euclidean Lie algebra of

dimension dimA and h0 is a four-dimensional lorentzian Lie algebra, hence either abelian
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or isomorphic to one of the following three Lie algebras: so(3) ⊕ R, so(1, 2) ⊕ R or the

solvable Nappi-Witten Lie algebra [50], described as a central extension of the Lie algebra

of euclidean motions of R
2 or, alternatively, as a double extension of an abelian two-

dimensional euclidean Lie algebra by a one-dimensional Lie algebra [51]. Case (III) is

somewhat different and will be treated in detail below.

Now we will show that case (II) always decomposes V and hence it cannot occur. The

proof is analogous to the one in [31, §3.2] for the euclidean simple factors S0,4. We only need

to show that any of the nonabelian Lie algebras h0 can occur as the reduced Lie algebra

associated to some x ∈ S1,3; that is, the one with Lie bracket [x,−,−]. As mentioned

above, there are three possible nonabelian lorentzian four-dimensional Lie algebras:

• so(3) ⊕ R, which has a timelike centre;

• so(1, 2) ⊕ R, which has a spacelike centre; and

• the solvable Nappi-Witten Lie algebra, which has a lightlike centre.

Given the causal characters of the centres, the following should perhaps not be too sur-

prising.

Proposition 14. Let 0 6= x ∈ S1,3 and let hx denote the Lie algebra structure on the vector

space S1,3 with Lie bracket [x,−,−]. Then

• if x is timelike, hx ∼= so(3) ⊕ R;

• if x is spacelike, hx ∼= so(1, 2) ⊕ R; and

• if x is lightlike, hx is isomorphic to the Nappi-Witten Lie algebra.

Proof. The 3-brackets of S1,3, relative to a pseudo-orthonormal basis (e0,e1,e2,e3), are

given by

[e0,e1,e2] = −e3 [e0,e1,e3] = +e2 [e0,e2,e3] = −e1 [e1,e2,e3] = −e0 .

The automorphism group of these brackets is SO(1, 3), whence without loss of generality we

can take x to be e0, e3 or e0 +e3 in the timelike, spacelike and lightlike cases, respectively.

We now discuss the reduced Lie algebras in each case.

• For x = e0, we have

[e1,e2] = −e3 [e1,e3] = +e2 [e2,e3] = −e1 ,

and in addition e0 central. The resulting Lie algebra is clearly isomorphic to so(3)⊕R.

• For x = e3, we have

[e0,e1] = +e2 [e0,e2] = −e1 [e1,e2] = −e0 .

with e3 central. The resulting Lie algebra is clearly isomorphic to so(1, 2) ⊕ R.
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• Let e± = e3 ± e0 and take x = e+, to obtain

[e1,e2] = −e+ [e−,e1] = −2e2 [e−,e2] = +2e1 ,

with e+ central. We recognise this as the double extension of the the abelian Lie

algebra spanned by e1,e2 by the one-dimensional Lie algebra spanned by e− with

dual e+. We can interpret e1,e2 as the generators of translations in the plane and e−

as the generator of rotations, and we are then centrally extending the translations by

e+. In either of these descriptions, we see that the resulting Lie algebra is isomorphic

to the Nappi-Witten Lie algebra.

Essentially the same proof as that in [31, §3.2] for S0,4 now shows that S1,3 can be

twisted out of V , decomposing it. In summary, case (2) cannot occur.

Finally, let us discuss case (III). We will let k = s ⊕ a denote a generic reductive Lie

algebra with a positive-definite invariant inner product. Under the adjoint representation,

w gets mapped to the Lie algebra Der0W (k) of skewsymmetric derivations of the Lie 3-

algebra W (k), which we now determine.

Proposition 15. Let s and a be a semisimple and abelian Lie algebras, respectively, with

invariant positive-definite inner products. Then

Der0W (s ⊕ a) ∼= (ad s ⋉ sab) ⊕ (so(a) ⋉ a) ,

with sab and a acting as null rotations on the lorentzian vector space W (s ⊕ a).

Proof. The most general skewsymmetric endomorphism of W (s ⊕ a) is given in terms of

α ∈ R, y, z ∈ s, b, c ∈ a, f ∈ so(s), g ∈ so(a) and ϕ : s → a by

De− = αe− + y + b

De+ = −αe+ + z + c

Dx = −〈z, x〉 e− − 〈y, x〉 e+ + f(x) + ϕ(x)

Da = −〈c, a〉 e− − 〈b, a〉 e+ − ϕt(a) + g(a) ,

for all x ∈ s and a ∈ a. Demanding that D preserves the Lie 3-bracket we obtain the

following extra conditions:

• From [e+,e−, x] we find [z, x]s = 0 for all x, but since s is semisimple and has trivial

centre, we conclude that z = 0.

• From [e−, x1, x2] we find that ϕ must annihilate [s, s]s, which implies that ϕ = 0

since s is semisimple. One also finds that f +α id is a derivation of s which, since all

derivations are inner, allows us to conclude that f + α id ∈ ad s.

• From [a, x1, x2] we find that 〈c, a〉 = 0 for all a, whence c = 0.

• From [x1, x2, x3] we find that f must be skewsymmetric, which means that α = 0,

whence f ∈ ad s.
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In summary, the most general D ∈ Der0W (s⊕ a) is given in terms of g ∈ so(a), c ∈ a and

y, z ∈ s by

De− = z + c

De+ = 0

Dx = [y, x]s − 〈z, x〉 e+

Da = ga− 〈c, a〉 e+ .

The Lie bracket of Der0W (s⊕ a) can be computed simply from the commutator of deriva-

tions, and we obtain

[(y1, z1, g1, c1), (y2, z2, g2, c2)] =
(
[y1, y2]s, [y1, z2]s − [y2, z1]s, [g1, g2]so(a), g1c2 − g2c1

)
,

which is precisely the direct sum of s ⋉ sab (with generic elements (y, z)) and so(a) ⋉ a

(with generic elements (g, c)).

It follows that W (s ⊕ a) is not fully reducible as a representation of Der0W (s ⊕ a).

Indeed, e+ spans an invariant subspace without a complementary subspace which is also

invariant.

Proposition 15 restricts the possible Lie algebra structures w on the underlying vector

space of W (s ⊕ a), since for every w ∈ w, adw ∈ Der0W (s ⊕ a). In fact, we have the

following

Proposition 16. The most general Lie algebra w is given by

[e−, a] = Ja

[e−, s] = [z, s]s

[s1, s2] = [ψs1, s2]s + 〈z, [s1, s2]s〉 e+

[a1, a2] = [a1, a2]r + 〈Ja1, a2〉 e+

for all a, a1, a2 ∈ a and s, s1, s2 ∈ s and where J ∈ so(a), z ∈ s, [−,−]r defines a reductive

Lie algebra structure r on the vector space a, J is a derivation over [−,−]r, and ψ ∈ End s

obeys

[ψs1, s2]s = [s1, ψs2]s (4.3)

and

ψ[ψs1, s2]s = [ψs1, ψs2]s , (4.4)

for all s1, s2 ∈ s, and

[z, ψs]s = ψ[z, s]s , (4.5)

for all s ∈ s.

Proof. In this proof, W := W (s ⊕ a). We determine the most general form of the Lie

brackets using Proposition 15 and the fact that [x, y] can be interpreted both as adx y or

as − ady x, which are the actions of adx ∈ Der0W on y and of ady ∈ Der0W on x, for all

x, y ∈W .

Since every derivation D ∈ Der0W annihilates e+, we see that e+ is central in w.

Now consider the bracket [e−, a] for a ∈ a. From Proposition 15, we see that [e−, a] =

ade
−

a ∈ a ⊕ Re+, whereas [e−, a] = ad−a e− ∈ a ⊕ s, whence [e−, a] ∈ a and hence

ade
−

: a → a defines a skewsymmetric endomorphism we call J . Similarly, [e−, s] for

s ∈ s, belongs to s, whence ade
−

: s → s defines a skewsymmetric endomorphism, which
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by Proposition 15 is actually an inner derivation (relative to the Lie bracket of s), whence

[e−, s] = [z, s]s for some z ∈ s.

Now consider the bracket [a, s] for a ∈ a and s ∈ s. From Proposition 15, ada s ∈

s ⊕ Re+, whereas ads a ∈ a ⊕ Re+, whence [a, s] ∈ Re+. However, metricity shows that

this is has to vanish, since 〈[s, a],e−〉 = 〈s, [a,e−]〉 = 0, since [a,e−] ∈ a and a ⊥ s.

Now consider the bracket [s1, s2] for si ∈ s. Since [s1,e−] = [s1, z] and using metricity,

we find that [s1, s2] = [ψs1, s2] + 〈z, [s1, s2]〉 e+, for some endomorphism ψ ∈ End s, not

necessarily a Lie algebra homomorphism.

Finally, we consider the bracket [a1, a2] for ai ∈ a. Since [a1,e−] = −Ja1 and again

using metricity, we find that [a1, a2] = g(a1)a2 + 〈Ja1, a2〉 e+, where g : a → so(a).

There are some conditions that we have to impose on these brackets: skewsymmetry,

Jacobi identity and that the map ad : w → Der0W is a Lie algebra homomorphism. These

conditions are straight-forward to impose and can be summarised as follows. Skewsymme-

try of the bracket and the Jacobi identity

[a1, [a2, a3]] = [[a1, a2], a3] + [a1, [a2, a3]] .

imply that the bracket [a1, a2]r := g(a1)a2 defines a reductive (since adr a ∈ so(a)) Lie

algebra structure, say r, on the vector space a. The skewsymmetry of the Lie bracket on

w and the Jacobi identity

[e−, [a1, a2]] = [[e−, a1], a2] + [a1, [e−, a2]] ,

say that J ∈ Der0 r.

Condition (4.3) on ψ follows from the skewsymmetry of the Lie bracket and (4.5) from

the Jacobi identity

[e−, [s1, s2]] = [[e−, s1], s2] + [s1, [e−, s2]] .

Indeed, expanding the above Jacobi identity we see that

[z, [ψs1, s2]s]s = [ψ[z, s1]s, s2]s + [ψs1, [z, s2]s]s ,

which, upon using the Jacobi identity for [−,−]s on the left-hand side and (4.3) on the

first term of the right-hand side, becomes

[[z, ψs1]s, s2]s = [[z, s1]s, ψs2]s = [ψ[z, s1]s, s2]s .

Since s is semisimple and has trivial centre, we see that this implies [z, ψs1]s = ψ[z, s1]s,

which is (4.5). Finally, the Jacobi identity

[s1, [s2, s3]] = [[s1, s2], s3] + [s1, [s2, s3]]

is equivalent to (4.4). Indeed, the above Jacobi identity expands to

[ψs1, [ψs2, s3]s]s = [ψ[ψs1, s2]s, s3]s + [ψs2, [ψs1, s3]s]s

up to central terms which vanish due to the Jacobi identity for [−,−]s. Using the Jacobi

identity of [−,−]s on the above relation we find

[[ψs1, ψs2]s − ψ[ψs1, s2]s, s3]s = 0 ,

which, using that s has trivial centre, becomes (4.4).

– 22 –



J
H
E
P
0
8
(
2
0
0
8
)
0
4
5

Remark 17. Notice that (4.4) says that the image of ψ is a Lie subalgebra and that on

its image, ψ commutes with the restriction there of ads.

It turns out that (4.3) implies (4.4). This will be useful later because (4.3) is linear in

ψ.

Lemma 18. Let s be a metric Lie algebra and let ψ ∈ End s obey (4.3) for all s1, s2 ∈ s.

The new bracket [s1, s2] := [ψs1, s2]s obeys the Jacobi identity.

Proof. The Jacobi identity of [s1, s2] := [ψs1, s2]s is equivalent to

C
1,2,3

[[s1, s2], s3] = C
1,2,3

[ψ[ψs1, s2]s, s3]s = 0 ,

for all si ∈ s, and where C indicates cyclic permutations of the indices. This is clearly

equivalent to

C
1,2,3

〈[[s1, s2], s3], s4〉 = 0 ,

for all si ∈ s. We now manipulate this expression using invariance of the inner product,

equation (4.3) and the Jacobi identity for [−,−]s:

C
1,2,3

〈[ψ[ψs1, s2]s, s3]s, s4〉 = C
1,2,3

〈[[ψs1, s2]s, ψs3]s, s4〉

= C
1,2,3

〈[ψs1, s2]s, [ψs3, s4]s〉

= C
1,2,3

〈[ψs1, s2]s, [s3, ψs4]s〉

= C
1,2,3

〈[[ψs1, s2]s, s3]s, ψs4〉

= C
1,2,3

(〈[ψs1, [s2, s3]s]s, ψs4〉 + 〈[[ψs1, s3]s, s2]s, ψs4〉) .

The last term on the r.h.s. can be further rewritten as

C
1,2,3

〈[[ψs1, s3]s, s2]s, ψs4〉 = C
1,2,3

〈[[s1, ψs3]s, s2]s, ψs4〉

= C
1,2,3

〈[[s2, ψs1]s, s3]s, ψs4〉

= − C
1,2,3

〈[[ψs1, s2]s, s3]s, ψs4〉 ,

where we have used cyclicity and (4.3). Therefore we see, using (4.3) again and the invari-

ance of the inner product, that

C
1,2,3

〈[ψ[ψs1, s2]s, s3]s, s4〉 = 1
2 C

1,2,3
〈[ψs1, [s2, s3]s]s, ψs4〉

= − C
1,2,3

〈[s2, s3]s, [ψs1, ψs4]s〉

= C
1,2,3

〈
[s1, [s2, s3]s]s, ψ

2s4
〉
,

which vanishes by the Jacobi identity of [−,−]s.
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Remark 19. In the lemma we assumed only that s is a metric Lie algebra. However in

order to relate the Jacobi identity of the bracket [ψs1, s2]s to (4.4) we did use, in addition,

that s had trivial centre.

Proposition 20. Let s = s1⊕· · ·⊕ sp be a semisimple Lie algebra with si its simple ideals,

and let ψ ∈ End s obey (4.3) for all s1, s2 ∈ s. Then ψ =
∑p

i=1 λiΠi, where Πi is the

orthogonal projection onto si and where λi ∈ R.

Proof. We observe that if ψ ∈ End s obeys condition (4.3), then so does any power ψn.

Furthermore, condition (4.3) is clearly linear in ψ, whence any linear combination of en-

domorphisms satisfying condition (4.3) will again satisfy (4.3). Hence in particular the

exponential exp(tψ) satisfies (4.3) and hence, by Lemma 18, also equation (4.4). By Re-

mark 17, exp(tψ) commutes with the adjoint representation on its image, which being

invertible is all of s. Since s is semisimple, Schur’s lemma says that exp(tψ) is a scalar ma-

trix on each simple factor; that is, exp(tψ) =
∑

i θi(t)Πi, with Πi the orthogonal projection

onto si. Differentiating at t = 0, we find ψ =
∑

i λiΠi, where λi = θ′i(0).

In summary, we have proved the following refined version of Proposition 16.

Proposition 21. The most general compatible Lie algebra structure w on the vector space

W (s ⊕ a) is given by

[e−, a] = Ja

[e−, s] = [z, s]s

[s1, s2] = [ψs1, s2]s + 〈z, [s1, s2]s〉 e+

[a1, a2] = [a1, a2]r + 〈Ja1, a2〉 e+

for all a, a1, a2 ∈ a and s, s1, s2 ∈ s and where z ∈ s, [−,−]r defines a reductive Lie algebra

structure on a, J ∈ so(a) ∩ Der r, and ψ ∈ End s is given by ψ =
∑

i λiΠi, where λi ∈ R

and Πi are the orthogonal projections onto the simple factors of s.

Imposing that the resulting metric Lie 3-algebra V in (4.2) be indecomposable will

further restrict the form of w, as will the fact that w is by construction a lorentzian

Lie algebra and these have been classified. We turn to this now in order to finish the

classification of indecomposable metric Lie 3-algebras of signature (2, p).

4.3 Indecomposable metric Lie 3-algebras of signature (2, p)

We saw above that there are two types of indecomposable Lie 3-algebras V of signature

(2, p), characterised by a lorentzian p-dimensional vector space W on which we have both a

metric Lie 3-algebra structure, also denoted W , and a metric Lie algebra structure, denoted

w. These two possible W s, said to be of types I and III above, are the following:

(I) W = A, abelian and w any lorentzian Lie algebra; that is, ad w < so(w); and

(III) W = W (s ⊕ a) and w given by Proposition 21, with some further restrictions to be

explicited below.

We remark that although type I is the special case of type III with s = 0, it nevertheless

pays to consider it separately.
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4.3.1 Type I

The indecomposable Lie 3-algebra with W of type I are such that V = Ru⊕Rv⊕A, with

A an abelian lorentzian Lie 3-algebra, with inner product which extends the one in A by

declaring that u, v ⊥ A, 〈u, u〉 = 0 = 〈v, v〉 and 〈u, v〉 = 1. The Lie 3-brackets are

[u, x, y] = [x, y] and [x, y, z] = −〈[x, y], z〉 v , (4.6)

with [x, y] the Lie brackets of a lorentzian Lie algebra w, which may be decomposable. The

most general lorentzian Lie algebra is given by

w = g0 ⊕ t ⊕ s ,

where g0 is an indecomposable lorentzian Lie algebra, t is an abelian euclidean Lie algebra

and s is a euclidean semisimple Lie algebra. It follows from (4.6) that t cannot appear,

for otherwise it decomposes V . Hence, w = g0 ⊕ s. The indecomposable lorentzian Lie

algebras g0 have been classified.

Theorem 22 ([52]). A finite-dimensional indecomposable lorentzian Lie algebra is either

one-dimensional, isomorphic to so(1, 2) or else isomorphic to the solvable Lie algebra mJ ,

defined on the vector space Re− ⊕ Re+ ⊕ E by the Lie bracket

[e−, x] = Jx and [x, y] = 〈Jx, y〉 e+ ,

for all x, y ∈ E and where 〈−,−〉 is a positive-definite inner product on E, J ∈ so(E)

is invertible, and we extend the inner product on E to all of V by declaring e± ⊥ E,

〈e+,e−〉 = 1 and 〈e±,e±〉 = 0.

We cannot take g0 to be one-dimensional, since this decomposes V , whence w =

so(1, 2) ⊕ s or w = mJ ⊕ s, which we will call type Ia and type Ib, respectively.

In summary, (indecomposable) type Ia metric Lie 3-algebras of signature (2, p) are

constructed as follows. The initial data consists of a semisimple Lie algebra s with a

positive-definite ad-invariant inner product (which is implicit in the notation) and a choice

of invariant inner product on so(1, 2), which comes down to a positive real number which

multiplies (the negative of) the Killing form. The corresponding indecomposable type Ia

metric Lie 3-algebra is denoted VIa(s). The underlying vector space is R(u, v)⊕ so(1, 2)⊕ s

with 〈u, u〉 = 〈v, v〉 = 0, 〈u, v〉 = 1, and all ⊕s orthogonal. The nonzero Lie 3-brackets are

given by
[u, x, y] = [x, y]so(1,2)

[u, s1, s2] = [s1, s2]s

[x, y, z] = −
〈
[x, y]so(1,2), z

〉
v

[s1, s2, s3] = −〈[s1, s2]s, s3〉 v ,
(4.7)

for all x, y, z ∈ so(1, 2) and si ∈ s.

Similarly, (indecomposable) type Ib metric Lie 3-algebras of signature (2, p) are con-

structed as follows. The initial data consists of a triple (E, J, s) consisting of an even-

dimensional euclidean space E with a nondegenerate skewsymmetric endomorphism J ,

and a semisimple Lie algebra s with a positive-definite ad-invariant inner product (which is

implicit in the notation). The corresponding indecomposable type Ib metric Lie 3-algebra
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is denoted VIb(E, J, s). The underlying vector space is R(u, v) ⊕ R(e+,e−) ⊕ E ⊕ s with

〈u, u〉 = 〈v, v〉 = 〈e±,e±〉 = 0, 〈u, v〉 = 1, 〈e+,e−〉 = 1 and all ⊕s orthogonal. The nonzero

Lie 3-brackets are given by

[u, s1, s2] = [s1, s2]s

[s1, s2, s3] = −〈[s1, s2]s, s3〉 v

[u,e−, x] = Jx

[u, x, y] = 〈Jx, y〉 e+

[e−, x, y] = −〈Jx, y〉 v ,

(4.8)

for all x, y ∈ E, si ∈ s.

As discussed in section 6, a sufficient condition for the decoupling of negative-norm

states from the Bagger-Lambert lagrangian, is that the Lie 3-algebra should admit a max-

imally isotropic centre. In signature (2, p) this means a two-dimensional isotropic centre.

This indeed happens in type Ib, since both e+ and v are central and span an isotropic

subspace. Due to the simplicity of so(2, 1), this does not happen in type Ia.

4.3.2 Type III

In this case W = W (s⊕ a) and w is a lorentzian Lie algebra structure on W with brackets

given by Proposition 21. Indecomposability forces the following condition: the reductive

Lie algebra structure r on the vector space a must be semisimple, since any element in the

centre of r is central in V and of positive norm, whence it spans a nondegenerate ideal.

At the same time, being lorentzian, the Lie algebra w can be one of the following:

• w = t ⊕ k, where t is lorentzian abelian and k is euclidean semisimple;

• w = so(1, 2)⊕ t⊕ k, with t and k euclidean abelian and semisimple, respectively; and

• w = mJ ⊕ t ⊕ k, with mJ defined in Theorem 22 and again t and k euclidean abelian

and semisimple, respectively.

Again we must exclude the “middle third,” this time because ad so(1, 2) ∼= so(1, 2) and

there is no so(1, 2) subalgebra of Der0W (s ⊕ a). This leaves the first and the third cases,

which we will call type IIIa and type IIIb, respectively.

In type IIIa, we see that e− ∈ t is central, whence in the notation of Proposition 21,

z = 0 and J = 0, whence we have Lie algebra structures on a and s which leave invariant

the euclidean inner product. This means that the corresponding Lie algebras are reductive.

From Proposition 20, it follows that the Lie algebra structure on s is isomorphic to an ideal

of s. We already observed that the Lie algebra structure r on a has to be semisimple,

for any abelian factors would decompose V , assumed indecomposable. Therefore the data

describing such a Lie 3-algebra is (s, r, λ1, . . . , λp), where s = s1 ⊕ . . . sp is a semisimple

Lie algebra decomposed into its simple ideals, λi ∈ R and r is a semisimple Lie algebra.

Both s and r are equipped with positive-definite invariant inner products. We let ψ =∑p
i=1 λiΠi, with Πi : s → si denoting the orthogonal projection on si. The corresponding

indecomposable Lie 3-algebra is denoted VIIIa(s, k, λi). The underlying vector space is

R(u, v) ⊕ R(e+,e−) ⊕ s ⊕ r with 〈u, u〉 = 〈v, v〉 = 〈e±,e±〉 = 0, 〈u, v〉 = 1, 〈e+,e−〉 = 1
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and all ⊕s orthogonal. The nonzero Lie 3-brackets are given by

[u, s1, s2] = [ψs1, s2]s

[u, a1, a2] = [a1, a2]r

[e−, s1, s2] = [s1, s2]s

[s1, s2, s3] = −〈[s1, s2]s, s3〉e+ − 〈[ψs1, s2]s, s3〉 v

[a1, a2, a3] = −〈[a1, a2]r, a3〉 v .
(4.9)

Finally, let us consider case IIIb. In this case, w ∼= mJ ⊕ t ⊕ k, where k is semisimple,

t is abelian, and mJ is one of the indecomposable lorentzian Lie algebras in Theorem 22.

Consider the Lie algebra w in Proposition 21. It will be convenient to split s and a further

as follows. Let s = g ⊕ h, where h = kerψ and g = imψ. This split corresponds to

partitioning the simple ideals si of s into two sets, depending on whether λi is or is not

zero. As a result both g and h are semisimple and commute with each other. Similarly let

us decompose the reductive Lie algebra r (with underlying vector space a) into r = l ⊕ b,

where l is semisimple and b is abelian. Relative to such splits, the Lie bracket of w becomes

[e−, s] = [z, s]s

[e−, a] = Ja

[g1, g2] = [ψg1, g2]g + 〈z, [g1, g2]g〉 e+

[h1, h2] = 〈z, [h1, h2]h〉e+

[ℓ1, ℓ2] = [ℓ1, ℓ2]l + 〈Jℓ1, ℓ2〉e+

[b1, b2] = 〈Jb1, b2〉e+ ,

for all a ∈ a, s ∈ s, gi ∈ g, hi ∈ h, ℓi ∈ l and bi ∈ b.

The first observation is that because l and g are semisimple, they do not admit non-

trivial central extensions. This means that we can eliminate the component of J in End l

and the component of z in g via an isometry, as we will now see. But first a preliminary

result.

Lemma 23. Under the decomposition r = l⊕b, with l semisimple and b abelian, J ∈ Der0 r

decomposes as

J =

(
Jl 0

0 Jb

)
,

where Jl ∈ Der0 l and Jb ∈ so(b).

Proof. Since J is a derivation, J [ℓ1, ℓ2] = [Jℓ1, ℓ2]+ [ℓ1, Jℓ2], which, since b commutes with

l, shows that J [ℓ1, ℓ2] ∈ l. Since l is semisimple, this shows that Jℓ ∈ l for all ℓ ∈ l. Since

l and b are orthogonal, we have for all ℓ ∈ l and b ∈ b, 0 = 〈Jℓ, b〉 = −〈ℓ, Jb〉, whence

Jb ∈ b. Defining Jl and Jb the restrictions of J to l and b, respectively, we see that J is as

shown.

Let Jl ∈ Der0 l denote the restriction of J to l. Since ℓ is semisimple, Jl(ℓ) = [ℓ0, ℓ] for

some ℓ0 ∈ l. Let f1 : w → w be the isometry which sends ℓ 7→ ℓ + 〈ℓ0, ℓ〉 e+ and e− 7→

e−−ℓ0−
1
2 |ℓ0|

2
e+ and is the identity elsewhere. Then Jl does not appear in the Lie brackets

of f1(w). Now let f2 : w → w denote the isometry which sends g 7→ g +
〈
ψ−1z, g

〉
e+ and

e− 7→ e−−ψ−1zg−
1
2 |ψ

−1zg|
2
e+ (and is the identity elsewhere), where zg is the projection

of z onto g along h. Then zg does not appear in the Lie brackets of f2(f1(w)).
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We may therefore take z ∈ h and J ∈ End b without loss of generality. The resulting

nonzero Lie brackets for w are then

[e−, h] = [z, h]h

[e−, b] = Jb

[g1, g2] = [ψg1, g2]g

[h1, h2] = 〈z, [h1, h2]h〉 e+

[ℓ1, ℓ2] = [ℓ1, ℓ2]l

[b1, b2] = 〈Jb1, b2〉 e+ ,

for all gi ∈ g, h, hi ∈ h, ℓi ∈ l and b, bi ∈ b, and where J ∈ so(b) and z ∈ h. It follows

from these brackets that if b ∈ ker J ∩ b, then it is central in V and has positive norm,

whence V becomes decomposable. Therefore for indecomposability of V we require J to

be nondegenerate when restricted to b, whence b must be even-dimensional.

As we now show, we can put z = 0 without loss of generality. The following 3-brackets

are the only ones in the type IIIb Lie 3-algebra V which involve z and h:

[u,e−, h] = [z, h]h

[u, h1, h2] = 〈z, [h1, h2]h〉 e+

[e−, h1, h2] = [h1, h2]h − 〈z, [h1, h2]h〉 v

[h1, h2, h3] = −〈[h1, h2]h, h3〉 e+ ,

where hi ∈ h. Consider the isometry f : V → V mapping h 7→ h − 〈z, h〉 v and u 7→

u + z − 1
2 |z|

2v and equal to the identity elsewhere. The induced brackets in f(V ) are

formally the same, but with z = 0. We will therefore put z = 0 from now on.

Doing so in the Lie brackets for w we obtain

[e−, b] = Jb

[b1, b2] = 〈Jb1, b2〉 e+

[g1, g2] = [ψg1, g2]g

[ℓ1, ℓ2] = [ℓ1, ℓ2]l ,

As expected, the resulting Lie algebra w is isomorphic to mJ ⊕ (g ⊕ l) ⊕ h, where g ⊕ l is

semisimple, h is abelian, and where the euclidean space E in mJ is b.

It follows that the data defining a type IIIb indecomposable metric Lie 3-algebra of

signature (2, p) is the following: three semisimple Lie algebras g, h and l each with a

choice of euclidean inner product, an invertible endomorphism ψ =
∑

i λiΠi of g, where

0 6= λi ∈ R and Πi are the orthogonal projections onto the simple ideals of g, and an even-

dimensional euclidean vector space E with a nondegenerate J ∈ so(E). The resulting type

IIIb Lie 3-algebra, denoted VIIIb(E, J, l, h, g, ψ), has as underlying vector space R(u, v) ⊕

R(e+,e−)⊕E⊕ l⊕ h⊕ g with 〈u, u〉 = 〈v, v〉 = 〈e±,e±〉 = 0, 〈u, v〉 = 1 = 〈e+,e−〉 and all

⊕s orthogonal. The nonzero Lie 3-brackets are given by

[u,e−, x] = Jx

[u, x, y] = 〈Jx, y〉 e+

[e−, x, y] = −〈Jx, y〉 v

[e−, h1, h2] = [h1, h2]h

[h1, h2, h3] = −〈[h1, h2]h, h3〉 e+

[u, g1, g2] = [ψg1, g2]g

[e−, g1, g2] = [g1, g2]g

[g1, g2, g3] = −〈[g1, g2]g, g3〉 e+ − 〈[ψg1, g2]g, g3〉 v

[u, ℓ1, ℓ2] = [ℓ1, ℓ2]l

[ℓ1, ℓ2, ℓ3] = −〈[ℓ1, ℓ2]l, ℓ3〉 v ,

(4.10)

where x, y ∈ E, h, hi ∈ h, gi ∈ g and ℓi ∈ l.

We can recognise several subalgebras among the above 3-brackets. First of all we

recognise two decomposable subalgebras: one isomorphic to W (l⊕R
1,1), where the R

1,1 is
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the abelian two-dimensional lorentzian Lie algebra spanned by e±, and one isomorphic to

W (h ⊕ R
1,1), with u, v spanning the R

1,1. Then we have V (E, J), defined by

[u,e−, x] = Jx [u, x, y] = 〈Jx, y〉 e+ [e−, x, y] = −〈Jx, y〉 v , (4.11)

for all x, y ∈ E. It is an indecomposable metric Lie 3-algebra with signature (2, ∗). We

then have V (g, ψ), with 3-brackets

[u, g1, g2] = [ψg1, g2]g

[e−, g1, g2] = [g1, g2]g

[g1, g2, g3] = −〈[g1, g2]g, g3〉 e+ − 〈[ψg1, g2]g, g3〉 v .

(4.12)

If ψ = λ id is a scalar endomorphism, V (g, ψ) is decomposable. Indeed, in this case define

û = 1
2(λ−1u+ e−) v̂ = λv + e+ ê+ = 1

2 (λv − e+) ê− = λ−1u− e− .

Then [ê±, g, g] = 0, whence V (g, ψ) ∼= W (g ⊕ R
1,1). Furthermore, if h and l are ab-

sent, then if ψ is again a scalar a short calculation shows that VIIIb(E, J, 0, 0, g, λ id) ∼=

VIIIb(E,−λ−1J, 0, g, 0, 0).

Finally let us remark that type Ib is the special case of type IIIb where h and (g, ψ) are

absent; and, similarly, type IIIa is the special case of IIIb where h and (E, J) are absent.

In summary, we have proved the following

Theorem 24. Let V be an indecomposable metric Lie 3-algebra with signature (2, p). Then

it is isomorphic to either VIa(s) or VIIIb(E, J, l, h, g, ψ), which have been defined in (4.7)

and (4.10), respectively. If the centre of V contains a maximally isotropic plane, then it is

of type IIIb, otherwise it is of type Ia.

The type IIIb algebras actually encapsulate a large class of metric Lie 3-algebras de-

pending on which of the data (E, J), k, l or (g, ψ) is present. It is worth listing the possible

cases which can occur, because they do tend to have different properties and, as explained

in section 2, many physically desirable properties of the Bagger-Lambert model can be

translated into properties of the Lie 3-algebra. Ignoring the trivial case, where none of the

structures are present, we have a priori 15 different types of metric Lie 3-algebras. However

some of these types are isomorphic and need not be counted as different. To see this, we

notice that V (E, J) admits an automorphism (u, v,e−,e+) 7→ (−e−,−e+, u, v) (and the

identity on E) which preserves both the 3-brackets and the inner product. Under this map,

the subalgebras W (h) ⊕ R
1,1 and W (l) ⊕ R

1,1 of VIIIb(E, J, h, l, g, ψ) get mapped to each

other, and V (g, ψ) is mapped to V (−ψg,−ψ−1), where −ψg means the Lie algebra with

bracket [x, y]−ψg := [−ψx, y]g. This means that type IIIb splits into 11 different types:

1. V (E, J);

2. W (h) ⊕ R
1,1, which is in the same class as W (l) ⊕ R

1,1 and V (g, ψ) with ψ = λ id a

scalar;

3. V (g, ψ), ψ not a scalar;
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4. VIIIb(E, J, 0, 0, g, ψ), ψ again not a scalar;

5. VIIIb(E, J, h, 0, 0, 0), which is in the same class as VIIIb(E, J, 0, 0, g, ψ) for ψ a scalar

and VIIIb(E, J, 0, l, 0, 0);

6. VIIIb(0, 0, h, l, 0, 0);

7. VIIIb(0, 0, h, 0, g, ψ), which is in the same class as VIIIb(0, 0, 0, l, g, ψ);

8. VIIIb(E, J, h, l, 0, 0);

9. VIIIb(0, 0, h, l, g, ψ);

10. VIIIb(E, J, h, 0, g, ψ), which is in the same class as VIIIb(E, J, 0, l, g, ψ); and

11. the full VIIIb(E, J, h, l, g, ψ).

We notice that all but the second and sixth cases are indecomposable.

5. The Lie algebra of derivations

In this section we will consider the Lie algebras of derivations of the metric Lie 3-algebras

classified in section 4.3. In particular we will deconstruct the type IIIb Lie 3-algebra found

in the previous section and discuss some natural special cases. Let us make some generic

remarks about automorphisms and derivations.

Given a metric Lie 3-algebra V there are several groups of automorphisms which are

of interest. The largest of such groups is the group AutV consisting of all automorphisms

of V :

AutV = {ϕ ∈ GL(V )|ϕ[x, y, z] = [ϕx,ϕy, ϕz], ∀x, y, z ∈ V } . (5.1)

Because V possesses an inner product, it is natural to restrict ourselves to the subgroup

Autc V of AutV consisting of automorphisms which rescale the inner product:

Autc V = {ϕ ∈ AutV |〈ϕx,ϕy〉 = µ 〈x, y〉 , ∀x, y ∈ V, ∃µ ∈ R} , (5.2)

which will be denoted conformal automorphisms. Similarly, we can restrict to auto-

morphisms which preserve the inner product, namely the orthogonal automorphisms

Aut0 V = {ϕ ∈ AutV |〈ϕx,ϕy〉 = 〈x, y〉 , ∀x, y ∈ V } . (5.3)

Finally, we have the so-called inner automorphisms, which are obtained by exponen-

tiating the inner derivations. We will call this group AdV . It is clear that we have the

following chain of inclusions

AdV < Aut0 V < Autc V < AutV .

Their Lie algebras are, respectively, the Lie algebras of derivations, conformal derivations,

skewsymmetric derivations and inner derivations, giving rise to a similar chain of inclusions

adV ⊳ Der0 V < Derc V < Der V ,

with adV the ideal of inner derivations, which generate the gauge transformations in the

Bagger-Lambert theory. This allows us to think of AdV as the gauge group of the theory.
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5.1 Type Ia

The 3-brackets of VIa(s) are given in (4.7), making VIa(s) ∼= W (so(1, 2) ⊕ s), whose auto-

morphisms were determined in [31, Proposition 11], which we recall here for convenience.

Proposition 25. Every 3-algebra automorphism ϕ ∈ AutVIa(s) is given by

ϕ(v) = β−3v

ϕ(u) = βu+ γv + t

ϕ(x) = β−1a(x) − β−2 〈t, a(x)〉 v ,

for all x ∈ so(1, 2)⊕ s and where β ∈ R
×, γ ∈ R, t ∈ so(1, 2)⊕ s and a ∈ SO(1, 2)×Aut0 s,

where Aut0 s denotes the subgroup of automorphisms of s which preserve the inner product.

Restricting to those automorphisms which preserve the inner product up to a homo-

thety, we find that γ is fixed in terms of β and the norm of t:

Proposition 26. Every 3-algebra conformal automorphism ϕ ∈ Autc VIa(s) is given by

ϕ(v) = β−3v

ϕ(u) = βu− 1
2β|t|

2v + t

ϕ(x) = β−1a(x) − β−2 〈t, a(x)〉 v ,

for all x ∈ so(1, 2) ⊕ s and where t ∈ so(1, 2) ⊕ s and a ∈ SO(1, 2) × Aut0 s. The inner

product is rescaled by β−2: 〈ϕx,ϕy〉 = β−2 〈x, y〉.

Restricting to automorphisms which preserve the inner product we find [31, Proposi-

tion 12] that β = 1.

Proposition 27. Every 3-algebra automorphism ϕ ∈ Aut0 VIa(s) preserving the inner

product is given by

ϕ(v) = v ϕ(u) = u− 1
2 |t|

2v + t ϕ(x) = a(x) − 〈t, a(x)〉 v ,

for all x ∈ so(1, 2) ⊕ s and where t ∈ so(1, 2) ⊕ s and a ∈ SO(1, 2) × Aut0 s.

As shown in [31], the connected component of Aut0 VIa(s) is AdVIa(s), consisting of the

inner automorphisms obtained by exponentiating the inner derivations of the Lie 3-algebra

VIa(s). This gives the following.

Proposition 28. Let Der0 VIa(s) denote the Lie algebra of skewsymmetric derivations of

the Lie 3-algebra VIa(s). Then

Der0 VIa(s) ∼=
(
so(1, 2) ⋉ R

3
)
⊕ (s ⋉ sab) ∼= adVIa(s) .

The Lie algebra DerVIa(s) of AutVIa(s) consists of derivations of V . It is isomorphic

to the real Lie algebra with generators D, S, Lx and Tx for x ∈ so(1, 2)⊕ s, subject to the

following nonzero Lie brackets:

[D,S] = −4S , [D,Tx] = −2Tx , [Lx, Ly] = L[x,y] and [Lx, Ty] = T[x,y] .

If we let a denote the two-dimensional solvable Lie subalgebra spanned by D and S, then

we find that Der VIa(s) has the following structure

Der VIa(s) ∼= a ⋉ adVIa(s) .
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5.2 Type IIIb

Finally let us consider V := VIIIb(E, J, l, h, g, ψ), a general type IIIb Lie 3-algebra as defined

in (4.10). As mentioned at the end of section 4.3.2, this type consists of 9 different types

of indecomposable Lie 3-algebras, depending on which of the four ingredients (E, J), l, h

or (g, ψ) are present.

Our strategy will be the following. We will first write down the most general endomor-

phism of V taking into account that derivations preserve the centre and the first derived

ideal V ′ = [V V V ]. In particular, elements that are not in V ′ can not appear in the image

of elements of V ′. Then we will impose the derivation property to derive constraints which

do not depend on which of the ingredients are present. Finally we will consider those con-

straints which depend on the presence of a particular ingredient. We will omit the routine

details and simply list the results.

For all type IIIb algebras, e+, v are central, whereas in some cases e− or u are central

as well. Those cases, however, are decomposable and we shall ignore them in this section.

Similarly we observe that e− or u do not belong to the first derived ideal. The most general

D ∈ EndV that preserves the the centre and the first derived ideal is given by

De+ = αe+ + βv

Dv = γe+ + δv

De− = ae− + bu+ x− + h− + ℓ− + g− + ηe+ + ξv

Du = ce− + du+ xu + hu + ℓu + gu + θe+ + ωv

Dx = ϕEE(x) + ϕEh(x) + ϕEl(x) + ϕEg(x) +A1(x)e+ + C1(x)v

Dh = ϕhE(h) + ϕhh(h) + ϕhl(h) + ϕhg(h) +A2(h)e+ + C2(h)v

Dℓ = ϕlE(ℓ) + ϕlh(ℓ) + ϕll(ℓ) + ϕlg(ℓ) +A3(ℓ)e+ + C3(ℓ)v

Dg = ϕgE(g) + ϕgh(g) + ϕgl(g) + ϕgg(g) +A4(g)e+ + C4(g)v ,

(5.4)

where α, β, γ, δ, a, b, c, d, η, ξ, θ, ω ∈ R, Ai, Ci are in E∗, h∗, l∗ and g∗, respectively for

i = 1, . . . , 4, x−, xu ∈ E, h−, hu ∈ h, ℓ−, ℓu ∈ l, g−, gu ∈ g and ϕV1V2
: V1 → V2 are linear

maps.

Notice that from the fact that elements on the different subspaces h, l, g and E never

appear together on a 3-bracket and u, e− only appear together with elements in E, we

find that if V1 6= V2 then ϕV1V2
= 0. Also, from the vanishing brackets [u, h1, h2] = 0 and

[e−, ℓ1, ℓ2] = 0 we find ℓ− = hu = 0.

We apply now the derivation D to all other brackets and obtain the following general

map. It is implicit that if V does not include E, then x− = xu = 0 and Dx does not

appear. Similarly, if h was not there, then h− = hu = 0 and Dh does not appear and so

forth. After some calculation we obtain the following.

Proposition 29. The most general derivation of the general VIIIb(E, J, l, h, g, ψ) is given
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by

De+ = αe+ + βv

Dv = γe+ + δv

De− = ae− + bu+ x− + h− + g− + ηe+ + ξv

Du = ce− + du+ xu + ℓu + ψg− + θe+ + ωv

Dx = ϕ(x) + 1
2(α+ a)x− 〈x−, x〉 e+ − 〈xu, x〉 v

Dh = [hD, h] − ah− 〈h−, h〉 e+

Dℓ = [ℓD, ℓ] − cℓ− 〈ℓu, ℓ〉 v

Dg = [gD, g] − (a+ bψ)g − 〈g−, g〉 e+ − 〈ψg−, g〉 v ,

where hD ∈ h, ℓD ∈ l, gD ∈ g, and ϕ ∈ so(E) and commutes with J . (In other words,

ϕ ∈ u(E, J), the unitary Lie algebra of orthogonal endomorphisms of E which commute

with J .) In addition, when E is present, we must impose the following

a+ d = 0 β = −c γ = −b α+ a = δ + d ; (5.5)

when h is present, we impose the following

c = 0 β = 0 α = −3a ; (5.6)

when l is present, we impose the following

b = 0 γ = 0 δ = −3c ; (5.7)

and finally when g is present, we impose the following

a+ bψ = d+ cψ−1 α+ 3a+ (γ + 3b)ψ = 0 β + (δ + 3a)ψ + 3bψ2 = 0 . (5.8)

Proof. The proof is largely routine, except possibly for one thing. The condition on ϕEE
in (5.4), says that

ϕEE ◦ J − J ◦ ϕEE = (a+ d)J and ϕEE + ϕtEE = (α+ a) id .

Consider now the exponential M(τ) := exp(τϕEE) for τ ∈ R. Then the first of the above

equations says that

M(τ)JM(τ)−1 = exp(τ [ϕEE ,−])J = eτ(a+d)J .

Taking determinants, using that J is nondegenerate, we see that e2nτ(a+d) = 1, where

2n = dimE. This being true for all τ ∈ R implies that a + d = 0. Thus ϕEE commutes

with J . We break it into a skewsymmetric part (denoted ϕ above) and symmetric part,

which by the second of the above equations on ϕEE is 1
2(α+ a) id.

We are interested in those derivations D which preserve the conformal class of the

inner product: 〈Dv1, v2〉 + 〈v1,Dv2〉 = 2µ 〈v1, v2〉.
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Proposition 30. The most general conformal derivation of the general VIIIb(E, J, l, h, g, ψ)

is given by

De+ = (2µ− a)e+ − cv

Dv = −be+ + (2µ− d)v

De− = ae− + bu+ x− + h− + g− − θv

Du = ce− + du+ xu + ℓu + ψg− + θe+

Dx = ϕ(x) + µx− 〈x−, x〉 e+ − 〈xu, x〉 v

Dh = [hD, h] − ah− 〈h−, h〉 e+

Dℓ = [ℓD, ℓ] − cℓ− 〈ℓu, ℓ〉 v

Dg = [gD, g] − (a+ bψ)g − 〈g−, g〉 e+ − 〈ψg−, g〉 v ,

where hD ∈ h, ℓD ∈ l, gD ∈ g, ϕ ∈ u(E, J) and where, if E is present we must impose (5.5),

if g is present µ = −a− bψ in addition to (5.8), if h is present a = −µ in addition to (5.6),

and if l is present c = −µ in addition to (5.7). The skewsymmetric derivations are obtained

setting µ = 0.

6. Imposing the physical constraints

We will now conclude by revisiting the 3-algebraic criteria set out in section 2 in light

of our structural results of section 3 and our classification of metric Lie 3-algebras with

signature (2, p) in section 4. We will select those (2, p) signature Lie 3-algebras which satisfy

the criteria and indicate how to go about constructing more general metric Lie 3-algebras

satisfying the criteria. We will focus on three specific criteria:

• decoupling of negative-norm states, which translates into the existence of a maximally

isotropic centre;

• absence of scale, which translates into the existence of automorphisms which rescale

the inner product; and

• parity invariance of the lagrangian, which translates into the existence of isometric

anti-automorphisms.

6.1 Decoupling of negative-norm states

As discussed in section 2.4, the existence of the shift symmetry used in [33, 36] in order to

decouple the negative-norm states present in the case of metric Lie 3-algebras of indefinite

signature, translates into the existence of a maximally isotropic centre. As noted noted in

Theorem 24, for (2, p) signature only case IIIb admits a maximally isotropic plane in its

centre so that Fv1ABC = 0 = Fv2ABC relative to the basis defined in section 2.1. Case Ia,

however, has a non-vanishing Fu1u2v2a component.

The results of section 3 allow us to make a more general statement. As stated in

Corollary 13, every metric Lie 3-algebra can be constructed out of the one-dimensional

and simple Lie 3-algebras iterating the operations of double extension and orthogonal

– 34 –



J
H
E
P
0
8
(
2
0
0
8
)
0
4
5

direct sum. It is clear from the structure of a double extension that double extending by

a simple Lie 3-algebra U cannot result in a maximally isotropic subspace of the centre,

for maximally isotropy means that U ⊕ U∗ should already contain a maximally isotropic

subspace of the centre, yet for U simple, U ⊕ U∗ has trivial centre. This means that any

double extension must be by a one-dimensional algebra. Since we only double extend by a

one-dimensional algebra, the results of [31] show that any simple factor of the algebra we

are double extending can be factored out, resulting in a decomposable Lie 3-algebra. Hence

we conclude that the only indecomposable metric Lie 3-algebras admitting a maximally

isotropic subspace of the centre are the ones constructed out of the one-dimensional Lie

3-algebra iterating the operations of orthogonal direct sum and double extension. This

does not mean, however, that all such algebras have a maximally isotropic centre. The

example of type Ia above shows that it is also necessary to impose the condition that

the Lie algebra structure on the subspace corresponding to the metric Lie 3-algebra we

are double extending, should also contain a maximally isotropic centre. Such metric Lie

algebras have been studied in [53].

These remarks give in principle a prescription for the construction of such metric Lie

3-algebras. We start with a euclidean abelian Lie 3-algebra A1 and we double extend to

D(A1) = R(u1, v1) ⊕A1, with nonzero brackets

[u1, x1, y1] = [x1, y1]1 and [x1, y1, z1] = −〈[x1, y1]1, z1〉 v1 ,

where [−,−]1 defines on A1 a metric Lie algebra structure w1. The most general such

Lie algebra is reductive, whence a direct sum of semisimple and abelian. It is, in fact,

isomorphic to W (k ⊕ t), where k is compact semisimple and t is abelian. This will be

indecomposable if t = 0, otherwise it is decomposable. The most general lorentzian Lie

3-algebra built out of one-dimensional Lie 3-algebras is therefore isomorphic to W2 :=

W (k) ⊕ A2 for some compact semisimple Lie algebra k and where A2 is an abelian Lie

3-algebra. Of course, k = 0, in which case W (k) ⊕ A2 = A′
2 is abelian. This yields all

possible lorentzian Lie 3-algebras without simple factors [31].

We now consider the double extension of W2 by the one-dimensional algebra: D(A2) =

R(u2, v2) ⊕W2, with nonzero brackets

[u2, x2, y2] = [x2, y2]2 and [x2, y2, z2] = [x1, y2, z2]2 − 〈[x2, y2]2, z2〉 v2 ,

where [−,−]2 is a lorentzian Lie algebra structure w2 on W2 which leaves invariant the

Lie 3-algebra brackets [−,−,−]2 of W2 and which has a maximally isotopic centre. In

particular, w2 is a Lie subalgebra of Der0W2. One must now determine the possible Lie

subalgebras of Der0W2, as was done in section 4 except that we only allow those with

a maximally isotropic centre. This yields a list of possible metric Lie 3-algebras with

signature (2, ∗) and with maximally isotropic centre. Let W3 = D(W2) ⊕ A3 be one such

algebra. We must now consider all the possible double extensions D(W3) = R(u3, v3)⊕W3

by a one-dimensional subalgebra, which has brackets

[u3, x3, y3] = [x3, y3]3 and [x3, y3, z3] = [x1, y3, z3]3 − 〈[x3, y3]3, z3〉 v3 ,
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for some Lie algebra structure w3 with brackets [−,−]3 on W3 which is compatible with

the 3-brackets on W3 and with maximally isotropic centre. This requires classifying the

possible Lie subalgebras w3 < Der0W3, etc. . . There is a classification [53] of metric Lie

algebras with signature (2, ∗), whence it ought to be a matter of patience to classify the

metric Lie 3-algebras of signature (3, ∗). Going beyond this requires knowing the metric Lie

algebras of signature (3, ∗) which is still open. Nevertheless, even if shy of a classification,

the above procedure gives a way of constructing examples.

6.2 Conformal automorphisms and the coupling constant

As discussed in section 2.5, the absence of scale in the Bagger-Lambert model is guaranteed

by the existence of an automorphism in the Lie 3-algebra which rescales the inner product.

Infinitesimally, such automorphisms are generated by derivations D ∈ DerV such that

〈Dx, y〉 + 〈x,Dy〉 = 2µ 〈x, y〉 for some µ ∈ R
× and for all x, y ∈ V . Such derivations exist

for a large class of (2, p)-signature Lie 3-algebras, as we now show.

Several types of metric Lie 3-algebras in (2, p) signature we have found admit conformal

automorphisms that are completely analogous to the one noted in section 2.5 that was used

to fix the coupling constant in the lorentzian case. For instance, Proposition 26 for the type

Ia algebras shows that the appropriate conformal automorphism here would be generated

by the parameter β, with the same powers as in the lorentzian case. However, we have

determined this class already to be physically uninteresting on the grounds that it does

not obey the shift symmetry criterion noted above.

As noted at the end of section 4.3.2, there are 9 classes of indecomposable type IIIb

algebras, denoted V (E, J), V (g, ψ) for ψ not a scalar, VIIIb(E, J, 0, 0, g, ψ) for ψ again not

a scalar, VIIIb(E, J, h, 0, 0, 0), VIIIb(0, 0, h, 0, g, ψ), VIIIb(E, J, h, l, 0, 0), VIIIb(0, 0, h, l, g, ψ),

VIIIb(E, J, h, 0, g, ψ), and the general VIIIb(E, J, h, l, g, ψ).

It is straight-forward to determine which of these algebras possess conformal deriva-

tions with µ 6= 0, by the use of Proposition 30.

Proposition 31. The following indecomposable type IIIb Lie 3-algebras admit nontriv-

ial conformal derivations: V (E, J), V (g, ψ) for ψ not a scalar, VIIIb(E, J, h, 0, 0, 0) and

VIIIb(0, 0, h, 0, g, ψ) for any ψ.

For each case in turn we will now exhibit a conformal derivation and the automorphism

to which it exponentiates. In all cases, the automorphism is a simple rescaling of the basis

elements.

For V (E, J) we have the following conformal derivation

De+ = µe+ Dv = 3µv De− = µe− Du = −µu Dx = µx ,

for all x ∈ E. This clearly exponentiates to the following conformal automorphism

(e+, v,e−, u, x) 7→
(
eµe+, e

3µv, eµe−, e
−µu, eµx

)
,

for all x ∈ E.
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For V (g, ψ) and ψ not a scalar, we find the following conformal derivation

De+ = 3µe+ Dv = 3µv De− = −µe− Du = −µu Dg = µg ,

for all g ∈ g, which exponentiates to the following conformal automorphism

(e+, v,e−, u, g) 7→
(
e3µe+, e

3µv, e−µe−, e
−µu, eµg

)
,

for all g ∈ g.

For VIIIb(E, J, h, 0, 0, 0), we find the following conformal derivation

De+ = 3µe+ Dv = µv De− = −µe− Du = µu Dx = µx Dh = µh ,

for all x ∈ E and h ∈ h, which exponentiates to the following conformal automorphism

(e+, v,e−, u, x, h) 7→
(
e3µe+, e

µv, e−µe−, e
µu, eµx, eµh

)
,

for all x ∈ E and h ∈ h.

Finally for VIIIb(0, 0, h, 0, g, ψ) and any ψ, we find the following conformal derivation

De+ = 3µe+ Dv = 3µv De− = −µe− Du = −µu Dg = µg Dh = µh ,

for all g ∈ g and h ∈ h, which exponentiates to the following conformal automorphism

(e+, v,e−, u, g, h) 7→
(
e3µe+, e

3µv, e−µe−, e
−µu, eµg, eµh

)
,

for all g ∈ g and h ∈ h.

6.3 Parity invariance

As discussed in section 2.6, parity invariance of the Bagger-Lambert action demands the

existence of an isometric anti-automorphism of the Lie 3-algebra. It is easy to find isometric

anti-automorphisms for all four types of indecomposable Lie 3-algebras in Proposition 31

admitting nontrivial conformal automorphisms. They are given by γ : V → V defined as

follows:

• For V (E, J),

γ : (e+, v,e−, u, x) 7→ (v,e+, u,e−, x) ,

for all x ∈ E;

• For V (g, ψ),

γ : (e+, v,e−, u, g) 7→ (−e+,−v,−e−,−u, g) ,

for all g ∈ g;

• For VIIIb(E, J, h, 0, 0, 0),

γ : (e+, v,e−, u, x, h) 7→ (e+,−v,e−,−u, x,−h) ,

for all x ∈ E and h ∈ h; and
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• VIIIb(0, 0, h, 0, g, ψ),

γ : (e+, v,e−, u, h, g) 7→ (−e+,−v,−e−,−u, h, g) ,

for all g ∈ g and h ∈ h.

A fuller investigation of the Bagger-Lambert models associated to these four classes of

Lie 3-algebras will be the subject of a forthcoming preprint.
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[arXiv:0804.2662].

– 38 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C045020
http://arxiv.org/abs/hep-th/0611108
http://arxiv.org/abs/0709.1260
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C065008
http://arxiv.org/abs/0711.0955
http://jhep.sissa.it/stdsearch?paper=11%282004%29078
http://arxiv.org/abs/hep-th/0411077
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB713%2C136
http://arxiv.org/abs/hep-th/0412310
http://jhep.sissa.it/stdsearch?paper=02%282008%29105
http://arxiv.org/abs/0712.3738
http://jhep.sissa.it/stdsearch?paper=05%282008%29085
http://arxiv.org/abs/0803.3218
http://jhep.sissa.it/stdsearch?paper=05%282008%29025
http://arxiv.org/abs/0803.3242
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB802%2C106
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB802%2C106
http://arxiv.org/abs/0803.3611
http://jhep.sissa.it/stdsearch?paper=05%282008%29105
http://arxiv.org/abs/0803.3803
http://jhep.sissa.it/stdsearch?paper=05%282008%29076
http://arxiv.org/abs/0804.0913
http://arxiv.org/abs/0804.1114
http://jhep.sissa.it/stdsearch?paper=05%282008%29038
http://arxiv.org/abs/0804.1256
http://arxiv.org/abs/0804.1784
http://jhep.sissa.it/stdsearch?paper=06%282008%29020
http://jhep.sissa.it/stdsearch?paper=06%282008%29020
http://arxiv.org/abs/0804.2110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C25%2C142001
http://arxiv.org/abs/0804.2201
http://jhep.sissa.it/stdsearch?paper=05%282008%29054
http://arxiv.org/abs/0804.2662


J
H
E
P
0
8
(
2
0
0
8
)
0
4
5

[18] J.P. Gauntlett and J.B. Gutowski, Constraining maximally supersymmetric membrane

actions, arXiv:0804.3078.

[19] P.-M. Ho and Y. Matsuo, M5 from M2, JHEP 06 (2008) 105 [arXiv:0804.3629].

[20] J. Gomis, G. Milanesi and J.G. Russo, Bagger-Lambert theory for general Lie algebras, JHEP

06 (2008) 075 [arXiv:0805.1012].
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